Browsing by Author "Blanco, Marina B"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Body Mass and Tail Girth Predict Hibernation Expression in Captive Dwarf Lemurs.(Physiological and biochemical zoology : PBZ, 2022-03) Blanco, Marina B; Greene, Lydia K; Klopfer, Peter H; Lynch, Danielle; Browning, Jenna; Ehmke, Erin E; Yoder, Anne DAbstractHibernation, a metabolic strategy, allows individuals to reduce energetic demands in times of energetic deficits. Hibernation is pervasive in nature, occurring in all major mammalian lineages and geographical regions; however, its expression is variable across species, populations, and individuals, suggesting that trade-offs are at play. Whereas hibernation reduces energy expenditure, energetically expensive arousals may impose physiological burdens. The torpor optimization hypothesis posits that hibernation should be expressed according to energy availability. The greater the energy surplus, the lower the hibernation output. The thrifty female hypothesis, a variation of the torpor optimization hypothesis, states that females should conserve more energy because of their more substantial reproductive costs. Contrarily, if hibernation's benefits offset its costs, hibernation may be maximized rather than optimized (e.g., hibernators with greater fat reserves could afford to hibernate longer). We assessed torpor expression in captive dwarf lemurs, primates that are obligate, seasonal, and tropical hibernators. Across 4.5 mo in winter, we subjected eight individuals at the Duke Lemur Center to conditions conducive to hibernation, recorded estimates of skin temperature hourly (a proxy for torpor), and determined body mass and tail fat reserves bimonthly. Across and between consecutive weigh-ins, heavier dwarf lemurs spent less time in torpor and lost more body mass. At equivalent body mass, females spent more time torpid and better conserved energy than did males. Although preliminary, our results support the torpor optimization and thrifty female hypotheses, suggesting that individuals optimize rather than maximize torpor according to body mass. These patterns are consistent with hibernation phenology in Madagascar, where dwarf lemurs hibernate longer in more seasonal habitats.Item Open Access Seasonal variation in glucose and insulin is modulated by food and temperature conditions in a hibernating primate.(Frontiers in physiology, 2023-01) Blanco, Marina B; Greene, Lydia K; Ellsaesser, Laura N; Williams, Cathy V; Ostrowski, Catherine A; Davison, Megan M; Welser, Kay; Klopfer, Peter HFeast-fast cycles allow animals to live in seasonal environments by promoting fat storage when food is plentiful and lipolysis when food is scarce. Fat-storing hibernators have mastered this cycle over a circannual schedule, by undergoing extreme fattening to stockpile fuel for the ensuing hibernation season. Insulin is intrinsic to carbohydrate and lipid metabolism and is central to regulating feast-fast cycles in mammalian hibernators. Here, we examine glucose and insulin dynamics across the feast-fast cycle in fat-tailed dwarf lemurs, the only obligate hibernator among primates. Unlike cold-adapted hibernators, dwarf lemurs inhabit tropical forests in Madagascar and hibernate under various temperature conditions. Using the captive colony at the Duke Lemur Center, we determined fasting glucose and insulin, and glucose tolerance, in dwarf lemurs across seasons. During the lean season, we maintained dwarf lemurs under stable warm, stable cold, or fluctuating ambient temperatures that variably included food provisioning or deprivation. Overall, we find that dwarf lemurs can show signatures of reversible, lean-season insulin resistance. During the fattening season prior to hibernation, dwarf lemurs had low glucose, insulin, and HOMA-IR despite consuming high-sugar diets. In the active season after hibernation, glucose, insulin, HOMA-IR, and glucose tolerance all increased, highlighting the metabolic processes at play during periods of weight gain versus weight loss. During the lean season, glucose remained low, but insulin and HOMA-IR increased, particularly in animals kept under warm conditions with daily food. Moreover, these lemurs had the greatest glucose intolerance in our study and had average HOMA-IR values consistent with insulin resistance (5.49), while those without food under cold (1.95) or fluctuating (1.17) temperatures did not. Remarkably low insulin in dwarf lemurs under fluctuating temperatures raises new questions about lipid metabolism when animals can passively warm and cool rather than undergo sporadic arousals. Our results underscore that seasonal changes in insulin and glucose tolerance are likely hallmarks of hibernating mammals. Because dwarf lemurs can hibernate under a range of conditions in captivity, they are an emerging model for primate metabolic flexibility with implications for human health.Item Open Access Variation in gut microbiome structure across the annual hibernation cycle in a wild primate.(FEMS microbiology ecology, 2022-07) Greene, Lydia K; Andriambeloson, Jean-Basile; Rasoanaivo, Hoby A; Yoder, Anne D; Blanco, Marina BThe gut microbiome can mediate host metabolism, including facilitating energy-saving strategies like hibernation. The dwarf lemurs of Madagascar (Cheirogaleus spp.) are the only obligate hibernators among primates. They also hibernate in the subtropics, and unlike temperate hibernators, fatten by converting fruit sugars to lipid deposits, torpor at relatively warm temperatures, and forage for a generalized diet after emergence. Despite these ecological differences, we might expect hibernation to shape the gut microbiome in similar ways across mammals. We, therefore, compare gut microbiome profiles, determined by amplicon sequencing of rectal swabs, in wild furry-eared dwarf lemurs (C. crossleyi) during fattening, hibernation, and after emergence. The dwarf lemurs exhibited reduced gut microbial diversity during fattening, intermediate diversity and increased community homogenization during hibernation, and greatest diversity after emergence. The Mycoplasma genus was enriched during fattening, whereas the Aerococcaceae and Actinomycetaceae families, and not Akkermansia, bloomed during hibernation. As expected, the dwarf lemurs showed seasonal reconfigurations of the gut microbiome; however, the patterns of microbial diversity diverged from temperate hibernators, and better resembled the shifts associated with dietary fruits and sugars in primates and model organisms. Our results thus highlight the potential for dwarf lemurs to probe microbiome-mediated metabolism in primates under contrasting conditions.