Browsing by Author "Bolund, L"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Design, recruitment, logistics, and data management of the GEHA (Genetics of Healthy Ageing) project.(Exp Gerontol, 2011-11) Skytthe, A; Valensin, S; Jeune, B; Cevenini, E; Balard, F; Beekman, M; Bezrukov, V; Blanche, H; Bolund, L; Broczek, K; Carru, C; Christensen, K; Christiansen, L; Collerton, JC; Cotichini, R; de Craen, AJM; Dato, S; Davies, K; De Benedictis, G; Deiana, L; Flachsbart, F; Gampe, J; Gilbault, C; Gonos, ES; Haimes, E; Hervonen, A; Hurme, MA; Janiszewska, D; Jylhä, M; Kirkwood, TBL; Kristensen, P; Laiho, P; Leon, A; Marchisio, A; Masciulli, R; Nebel, A; Passarino, G; Pelicci, G; Peltonen, L; Perola, M; Poulain, M; Rea, IM; Remacle, J; Robine, JM; Schreiber, S; Scurti, M; Sevini, F; Sikora, E; Skouteri, A; Slagboom, PE; Spazzafumo, L; Stazi, MA; Toccaceli, V; Toussaint, O; Törnwall, O; Vaupel, JW; Voutetakis, K; Franceschi, C; GEHA consortiumIn 2004, the integrated European project GEHA (Genetics of Healthy Ageing) was initiated with the aim of identifying genes involved in healthy ageing and longevity. The first step in the project was the recruitment of more than 2500 pairs of siblings aged 90 years or more together with one younger control person from 15 areas in 11 European countries through a coordinated and standardised effort. A biological sample, preferably a blood sample, was collected from each participant, and basic physical and cognitive measures were obtained together with information about health, life style, and family composition. From 2004 to 2008 a total of 2535 families comprising 5319 nonagenarian siblings were identified and included in the project. In addition, 2548 younger control persons aged 50-75 years were recruited. A total of 2249 complete trios with blood samples from at least two old siblings and the younger control were formed and are available for genetic analyses (e.g. linkage studies and genome-wide association studies). Mortality follow-up improves the possibility of identifying families with the most extreme longevity phenotypes. With a mean follow-up time of 3.7 years the number of families with all participating siblings aged 95 years or more has increased by a factor of 5 to 750 families compared to when interviews were conducted. Thus, the GEHA project represents a unique source in the search for genes related to healthy ageing and longevity.Item Open Access GxE interactions between FOXO genotypes and drinking tea are significantly associated with prevention of cognitive decline in advanced age in China.(J Gerontol A Biol Sci Med Sci, 2015-04) Zeng, Y; Chen, H; Ni, T; Ruan, R; Feng, L; Nie, C; Cheng, L; Li, Y; Tao, W; Gu, J; Land, KC; Yashin, A; Tan, Q; Yang, Z; Bolund, L; Yang, H; Hauser, E; Willcox, DC; Willcox, BJ; Tian, X; Vaupel, JWLogistic regression analysis based on data from 822 Han Chinese oldest old aged 92+ demonstrated that interactions between carrying FOXO1A-266 or FOXO3-310 or FOXO3-292 and tea drinking at around age 60 or at present time were significantly associated with lower risk of cognitive disability at advanced ages. Associations between tea drinking and reduced cognitive disability were much stronger among carriers of the genotypes of FOXO1A-266 or FOXO3-310 or FOXO3-292 compared with noncarriers, and it was reconfirmed by analysis of three-way interactions across FOXO genotypes, tea drinking at around age 60, and at present time. Based on prior findings from animal and human cell models, we postulate that intake of tea compounds may activate FOXO gene expression, which in turn may positively affect cognitive function in the oldest old population. Our empirical findings imply that the health benefits of particular nutritional interventions, including tea drinking, may, in part, depend upon individual genetic profiles.Item Open Access Interaction Between the FOXO1A-209 Genotype and Tea Drinking Is Significantly Associated with Reduced Mortality at Advanced Ages.(Rejuvenation Res, 2016-06) Zeng, Y; Chen, H; Ni, T; Ruan, R; Nie, C; Liu, X; Feng, L; Zhang, F; Lu, J; Li, J; Li, Y; Tao, W; Gregory, SG; Gottschalk, W; Lutz, MW; Land, KC; Yashin, A; Tan, Q; Yang, Z; Bolund, L; Ming, Q; Yang, H; Min, J; Willcox, DC; Willcox, BJ; Gu, J; Hauser, E; Tian, X; Vaupel, JWOn the basis of the genotypic/phenotypic data from Chinese Longitudinal Healthy Longevity Survey (CLHLS) and Cox proportional hazard model, the present study demonstrates that interactions between carrying FOXO1A-209 genotypes and tea drinking are significantly associated with lower risk of mortality at advanced ages. Such a significant association is replicated in two independent Han Chinese CLHLS cohorts (p = 0.028-0.048 in the discovery and replication cohorts, and p = 0.003-0.016 in the combined dataset). We found the associations between tea drinking and reduced mortality are much stronger among carriers of the FOXO1A-209 genotype compared to non-carriers, and drinking tea is associated with a reversal of the negative effects of carrying FOXO1A-209 minor alleles, that is, from a substantially increased mortality risk to substantially reduced mortality risk at advanced ages. The impacts are considerably stronger among those who carry two copies of the FOXO1A minor allele than those who carry one copy. On the basis of previously reported experiments on human cell models concerning FOXO1A-by-tea-compounds interactions, we speculate that results in the present study indicate that tea drinking may inhibit FOXO1A-209 gene expression and its biological functions, which reduces the negative impacts of FOXO1A-209 gene on longevity (as reported in the literature) and offers protection against mortality risk at oldest-old ages. Our empirical findings imply that the health outcomes of particular nutritional interventions, including tea drinking, may, in part, depend upon individual genetic profiles, and the research on the effects of nutrigenomics interactions could potentially be useful for rejuvenation therapies in the clinic or associated healthy aging intervention programs.