Browsing by Author "Borrow, P"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Origin and evolution of HIV-1 in breast milk determined by single-genome amplification and sequencing.(J Virol, 2011-03) Salazar-Gonzalez, JF; Salazar, MG; Learn, GH; Fouda, GG; Kang, HH; Mahlokozera, T; Wilks, AB; Lovingood, RV; Stacey, A; Kalilani, L; Meshnick, SR; Borrow, P; Montefiori, DC; Denny, TN; Letvin, NL; Shaw, GM; Hahn, BH; Permar, SR; A0167854, Center for HIV AIDS Vaccine ImmunologyHIV transmission via breastfeeding accounts for a considerable proportion of infant HIV acquisition. However, the origin and evolution of the virus population in breast milk, the likely reservoir of transmitted virus variants, are not well characterized. In this study, HIV envelope (env) genes were sequenced from virus variants amplified by single-genome amplification from plasmas and milk of 12 chronically HIV-infected, lactating Malawian women. Maximum likelihood trees and statistical tests of compartmentalization revealed interspersion of plasma and milk HIV env sequences in the majority of subjects, indicating limited or no compartmentalization of milk virus variants. However, phylogenetic tree analysis further revealed monotypic virus variants that were significantly more frequent in milk (median proportion of identical viruses, 29.5%; range, 0 to 61%) than in plasma (median proportion of identical viruses, 0%; range, 0 to 26%) (P = 0.002), suggesting local virus replication in the breast milk compartment. Moreover, clonally amplified virus env genes in milk produced functional virus Envs that were all CCR5 tropic. Milk and plasma virus Envs had similar predicted phenotypes and neutralization sensitivities to broadly neutralizing antibodies in both transmitting and nontransmitting mothers. Finally, phylogenetic comparison of longitudinal milk and plasma virus env sequences revealed synchronous virus evolution and new clonal amplification of evolved virus env genes in milk. The limited compartmentalization and the clonal amplification of evolving, functional viruses in milk indicate continual seeding of the mammary gland by blood virus variants, followed by transient local replication of these variants in the breast milk compartment.Item Open Access The magnitude and kinetics of the mucosal HIV-specific CD8+ T lymphocyte response and virus RNA load in breast milk.(PLoS One, 2011) Mahlokozera, T; Kang, HH; Goonetilleke, N; Stacey, AR; Lovingood, RV; Denny, TN; Kalilani, L; Bunn, JE; Meshnick, SR; Borrow, P; Letvin, NL; Permar, SR; Immunology, Center for HIVAIDS VaccineBACKGROUND: The risk of postnatal HIV transmission is associated with the magnitude of the milk virus load. While HIV-specific cellular immune responses control systemic virus load and are detectable in milk, the contribution of these responses to the control of virus load in milk is unknown. METHODS: We assessed the magnitude of the immunodominant GagRY11 and subdominant EnvKY9-specific CD8+ T lymphocyte response in blood and milk of 10 A*3002+, HIV-infected Malawian women throughout the period of lactation and correlated this response to milk virus RNA load and markers of breast inflammation. RESULTS: The magnitude and kinetics of the HIV-specific CD8+ T lymphocyte responses were discordant in blood and milk of the right and left breast, indicating independent regulation of these responses in each breast. However, there was no correlation between the magnitude of the HIV-specific CD8+ T lymphocyte response and the milk virus RNA load. Further, there was no correlation between the magnitude of this response and markers of breast inflammation. CONCLUSIONS: The magnitude of the HIV-specific CD8+ T lymphocyte response in milk does not appear to be solely determined by the milk virus RNA load and is likely only one of the factors contributing to maintenance of low virus load in milk.