Browsing by Author "Bose, Shree"
Results Per Page
Sort Options
Item Open Access Chromatin remodeling in peripheral blood cells reflects COVID-19 symptom severity.(bioRxiv, 2020-12-05) Giroux, Nicholas S; Ding, Shengli; McClain, Micah T; Burke, Thomas W; Petzold, Elizabeth; Chung, Hong A; Palomino, Grecia R; Wang, Ergang; Xi, Rui; Bose, Shree; Rotstein, Tomer; Nicholson, Bradly P; Chen, Tianyi; Henao, Ricardo; Sempowski, Gregory D; Denny, Thomas N; Ko, Emily R; Ginsburg, Geoffrey S; Kraft, Bryan D; Tsalik, Ephraim L; Woods, Christopher W; Shen, XilingSARS-CoV-2 infection triggers highly variable host responses and causes varying degrees of illness in humans. We sought to harness the peripheral blood mononuclear cell (PBMC) response over the course of illness to provide insight into COVID-19 physiology. We analyzed PBMCs from subjects with variable symptom severity at different stages of clinical illness before and after IgG seroconversion to SARS-CoV-2. Prior to seroconversion, PBMC transcriptomes did not distinguish symptom severity. In contrast, changes in chromatin accessibility were associated with symptom severity. Furthermore, single-cell analyses revealed evolution of the chromatin accessibility landscape and transcription factor motif occupancy for individual PBMC cell types. The most extensive remodeling occurred in CD14+ monocytes where sub-populations with distinct chromatin accessibility profiles were associated with disease severity. Our findings indicate that pre-seroconversion chromatin remodeling in certain innate immune populations is associated with divergence in symptom severity, and the identified transcription factors, regulatory elements, and downstream pathways provide potential prognostic markers for COVID-19 subjects.Item Open Access DAMPs/PAMPs induce monocytic TLR activation and tolerance in COVID-19 patients; nucleic acid binding scavengers can counteract such TLR agonists.(Biomaterials, 2022-04) Naqvi, Ibtehaj; Giroux, Nicholas; Olson, Lyra; Morrison, Sarah Ahn; Llanga, Telmo; Akinade, Tolu O; Zhu, Yuefei; Zhong, Yiling; Bose, Shree; Arvai, Stephanie; Abramson, Karen; Chen, Lingye; Que, Loretta; Kraft, Bryan; Shen, Xiling; Lee, Jaewoo; Leong, Kam W; Nair, Smita K; Sullenger, BruceMillions of COVID-19 patients have succumbed to respiratory and systemic inflammation. Hyperstimulation of toll-like receptor (TLR) signaling is a key driver of immunopathology following infection by viruses. We found that severely ill COVID-19 patients in the Intensive Care Unit (ICU) display hallmarks of such hyper-stimulation with abundant agonists of nucleic acid-sensing TLRs present in their blood and lungs. These nucleic acid-containing Damage and Pathogen Associated Molecular Patterns (DAMPs/PAMPs) can be depleted using nucleic acid-binding microfibers to limit the patient samples' ability to hyperactivate such innate immune receptors. Single-cell RNA-sequencing revealed that CD16+ monocytes from deceased but not recovered ICU patients exhibit a TLR-tolerant phenotype and a deficient anti-viral response after ex vivo TLR stimulation. Plasma proteomics confirmed such myeloid hyperactivation and revealed DAMP/PAMP carrier consumption in deceased patients. Treatment of these COVID-19 patient samples with MnO nanoparticles effectively neutralizes TLR activation by the abundant nucleic acid-containing DAMPs/PAMPs present in their lungs and blood. Finally, MnO nanoscavenger treatment limits the ability of DAMPs/PAMPs to induce TLR tolerance in monocytes. Thus, treatment with microfiber- or nanoparticle-based DAMP/PAMP scavengers may prove useful for limiting SARS-CoV-2 induced hyperinflammation, preventing monocytic TLR tolerance, and improving outcomes in severely ill COVID-19 patients.Item Open Access Differential chromatin accessibility in peripheral blood mononuclear cells underlies COVID-19 disease severity prior to seroconversion.(Res Sq, 2022-04-07) Giroux, Nicholas S; Ding, Shengli; McClain, Micah T; Burke, Thomas W; Petzold, Elizabeth; Chung, Hong A; Rivera, Grecia O; Wang, Ergang; Xi, Rui; Bose, Shree; Rotstein, Tomer; Nicholson, Bradly P; Chen, Tianyi; Henao, Ricardo; Sempowski, Gregory D; Denny, Thomas N; De Ussel, Maria Iglesias; Satterwhite, Lisa L; Ko, Emily R; Ginsburg, Geoffrey S; Kraft, Bryan D; Tsalik, Ephraim L; Shen, Xiling; Woods, ChristopherSARS-CoV-2 infection triggers profound and variable immune responses in human hosts. Chromatin remodeling has been observed in individuals severely ill or convalescing with COVID-19, but chromatin remodeling early in disease prior to anti-spike protein IgG seroconversion has not been defined. We performed the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and RNA-seq on peripheral blood mononuclear cells (PBMCs) from outpatients with mild or moderate symptom severity at different stages of clinical illness. Early in the disease course prior to IgG seroconversion, modifications in chromatin accessibility associate with mild or moderate symptoms are already robust and include severity-associated changes in accessibility of genes in interleukin signaling, regulation of cell differentiation and cell morphology. Furthermore, single-cell analyses revealed evolution of the chromatin accessibility landscape and transcription factor motif accessibility for individual PBMC cell types over time. The most extensive remodeling occurred in CD14+ monocytes, where sub-populations with distinct chromatin accessibility profiles were observed prior to seroconversion. Mild symptom severity is marked by upregulation classical antiviral pathways including those regulating IRF1 and IRF7, whereas in moderate disease these classical antiviral signals diminish suggesting dysregulated and less effective responses. Together, these observations offer novel insight into the epigenome of early mild SARS-CoV-2 infection and suggest that detection of chromatin remodeling in early disease may offer promise for a new class of diagnostic tools for COVID-19.Item Open Access Differential chromatin accessibility in peripheral blood mononuclear cells underlies COVID-19 disease severity prior to seroconversion.(Scientific reports, 2022-07-09) Giroux, Nicholas S; Ding, Shengli; McClain, Micah T; Burke, Thomas W; Petzold, Elizabeth; Chung, Hong A; Rivera, Grecia O; Wang, Ergang; Xi, Rui; Bose, Shree; Rotstein, Tomer; Nicholson, Bradly P; Chen, Tianyi; Henao, Ricardo; Sempowski, Gregory D; Denny, Thomas N; De Ussel, Maria Iglesias; Satterwhite, Lisa L; Ko, Emily R; Ginsburg, Geoffrey S; Kraft, Bryan D; Tsalik, Ephraim L; Shen, Xiling; Woods, Christopher WSARS-CoV-2 infection triggers profound and variable immune responses in human hosts. Chromatin remodeling has been observed in individuals severely ill or convalescing with COVID-19, but chromatin remodeling early in disease prior to anti-spike protein IgG seroconversion has not been defined. We performed the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and RNA-seq on peripheral blood mononuclear cells (PBMCs) from outpatients with mild or moderate symptom severity at different stages of clinical illness. Early in the disease course prior to IgG seroconversion, modifications in chromatin accessibility associated with mild or moderate symptoms were already robust and included severity-associated changes in accessibility of genes in interleukin signaling, regulation of cell differentiation and cell morphology. Furthermore, single-cell analyses revealed evolution of the chromatin accessibility landscape and transcription factor motif accessibility for individual PBMC cell types over time. The most extensive remodeling occurred in CD14+ monocytes, where sub-populations with distinct chromatin accessibility profiles were observed prior to seroconversion. Mild symptom severity was marked by upregulation of classical antiviral pathways, including those regulating IRF1 and IRF7, whereas in moderate disease, these classical antiviral signals diminished, suggesting dysregulated and less effective responses. Together, these observations offer novel insight into the epigenome of early mild SARS-CoV-2 infection and suggest that detection of chromatin remodeling in early disease may offer promise for a new class of diagnostic tools for COVID-19.Item Embargo Investigating the Metabolic Reprogramming of Ovarian Cancer(2023) Bose, ShreeOvarian cancer (OC) is the most lethal gynecological malignancy, with aggressive metastatic disease responsible for the majority of ovarian cancer related deaths. Despite the clinical significance of OC omental metastases, the precise molecular mechanisms which drive this phenomenon have not been well characterized, making the resulting aggressive phenotype even more puzzling. Recent evidence has highlighted the importance of metabolic reprograming in driving this tumoral behavior, with OC metastases adapting to utilize nutrients available in the metastatic niche to rapidly proliferate. To better understand the metabolic changes that underlie the aggressive nature of OC, we undertook a broad investigation to better characterize metabolic reprogramming in ovarian cancer, with a focus on omental metastasis and chemoresistance. Firstly, we sought to expand the arsenal of tools used to study OC metabolism. In particular, we were interested in using organoids, self-organizing, expanding 3D cultures derived from stem cells, to study OC. Using tissue derived from patients, these miniaturized models have been shown to recapitulate various aspects of patient physiology and disease phenotypes including genetic profiles and drug sensitivities. However, as metabolism modeling in these 3D cultures remains yet unexplored, we aimed to introduce genetically encoded, fluorescent biosensors as robust tools to interrogate metabolism in this context. In Chapter 2, we detail our investigation in which we transfected plasmids encoding the metabolic biosensors HyPer, iNap, Peredox, and Perceval into 15 ovarian cancer cell lines to assay oxidative stress, NADPH/NADP+, NADH/NAD+, and ATP/ADP, respectively. Fluorescence readings were used to assay dynamic metabolic responses to omental conditioned media (OCM) and 100 μM carboplatin treatment. SKOV3 cells expressing HyPer were imaged as 2D monolayers, 3D organoids, and as in vivo metastases via an intravital omental window. We further established organoids from ascites collected from Stage III/IV OC patients with carboplatin-resistant or carboplatin-sensitive tumors (n=8 total). These patient-derived organoids (PDOs) were engineered to express HyPer, and metabolic readings of oxidative stress were performed during treatment with 100 μM carboplatin. Exposure to OCM or carboplatin induced heterogenous metabolic changes in 15 OC cell lines, as measured using metabolic sensors. Oxidative stress of in vivo omental metastases, measured via intravital imaging of metastasizing SKOV3-HyPer cells, was more closely recapitulated by SKOV3-HyPer organoids than by 2D monolayers. Finally, carboplatin treatment of HyPer-expressing PDOs induced higher oxidative stress in organoids derived from carboplatin-resistant patients than from those derived from carboplatin-sensitive patients. Our study showed that biosensors provide a useful method of studying dynamic metabolic changes in preclinical models of OC, including 3D organoids and intravital imaging. As 3D models of OC continue to evolve, the repertoire of biosensors will likely serve as valuable tools to probe the metabolic changes of clinical importance in OC. Secondly, in Chapter 3, we focused on characterizing the role of the pentose phosphate pathway (PPP), a metabolic pathway responsible for producing nucleotide pentose precursors through a nonoxidative series of reactions and the reducing equivalent NADPH through a distinct oxidative branch. Using computational analysis of gene expression data, metabolomics analysis, and biochemical approaches, we observed upregulation of the pentose phosphate pathway (PPP), a key cellular redox homeostasis mechanism, of metastatic OC cells in the omentum compared to primary OC tumors. We established these increases coincided with increased oxidative stress experienced by OC cells in the omental microenvironment, using both established oxidative stress assays and genetically encoded biosensors; and sought to understand if the PPP was an important cellular mechanism to compensate for this metabolic pressure. Indeed, both shRNA-mediated and pharmacological inhibition of G6PD, the rate-limiting enzyme of the PPP, reduces tumor burden in pre-clinical models of OC, suggesting this adaptive metabolic dependency is important for OC omental metastasis. This work collectively illustrates the importance of characterizing OC metabolism and supports future efforts to develop tools to more effectively investigate and target aspects of metabolic reprogramming in OC which drive metastasis and chemoresistance.
Item Open Access Patient-derived micro-organospheres enable clinical precision oncology.(Cell stem cell, 2022-06) Ding, Shengli; Hsu, Carolyn; Wang, Zhaohui; Natesh, Naveen R; Millen, Rosemary; Negrete, Marcos; Giroux, Nicholas; Rivera, Grecia O; Dohlman, Anders; Bose, Shree; Rotstein, Tomer; Spiller, Kassandra; Yeung, Athena; Sun, Zhiguo; Jiang, Chongming; Xi, Rui; Wilkin, Benjamin; Randon, Peggy M; Williamson, Ian; Nelson, Daniel A; Delubac, Daniel; Oh, Sehwa; Rupprecht, Gabrielle; Isaacs, James; Jia, Jingquan; Chen, Chao; Shen, John Paul; Kopetz, Scott; McCall, Shannon; Smith, Amber; Gjorevski, Nikolche; Walz, Antje-Christine; Antonia, Scott; Marrer-Berger, Estelle; Clevers, Hans; Hsu, David; Shen, XilingPatient-derived xenografts (PDXs) and patient-derived organoids (PDOs) have been shown to model clinical response to cancer therapy. However, it remains challenging to use these models to guide timely clinical decisions for cancer patients. Here, we used droplet emulsion microfluidics with temperature control and dead-volume minimization to rapidly generate thousands of micro-organospheres (MOSs) from low-volume patient tissues, which serve as an ideal patient-derived model for clinical precision oncology. A clinical study of recently diagnosed metastatic colorectal cancer (CRC) patients using an MOS-based precision oncology pipeline reliably assessed tumor drug response within 14 days, a timeline suitable for guiding treatment decisions in the clinic. Furthermore, MOSs capture original stromal cells and allow T cell penetration, providing a clinical assay for testing immuno-oncology (IO) therapies such as PD-1 blockade, bispecific antibodies, and T cell therapies on patient tumors.Item Open Access Rapid tissue prototyping with micro-organospheres.(Stem cell reports, 2022-09) Wang, Zhaohui; Boretto, Matteo; Millen, Rosemary; Natesh, Naveen; Reckzeh, Elena S; Hsu, Carolyn; Negrete, Marcos; Yao, Haipei; Quayle, William; Heaton, Brook E; Harding, Alfred T; Bose, Shree; Driehuis, Else; Beumer, Joep; Rivera, Grecia O; van Ineveld, Ravian L; Gex, Donald; DeVilla, Jessica; Wang, Daisong; Puschhof, Jens; Geurts, Maarten H; Yeung, Athena; Hamele, Cait; Smith, Amber; Bankaitis, Eric; Xiang, Kun; Ding, Shengli; Nelson, Daniel; Delubac, Daniel; Rios, Anne; Abi-Hachem, Ralph; Jang, David; Goldstein, Bradley J; Glass, Carolyn; Heaton, Nicholas S; Hsu, David; Clevers, Hans; Shen, XilingIn vitro tissue models hold great promise for modeling diseases and drug responses. Here, we used emulsion microfluidics to form micro-organospheres (MOSs), which are droplet-encapsulated miniature three-dimensional (3D) tissue models that can be established rapidly from patient tissues or cells. MOSs retain key biological features and responses to chemo-, targeted, and radiation therapies compared with organoids. The small size and large surface-to-volume ratio of MOSs enable various applications including quantitative assessment of nutrient dependence, pathogen-host interaction for anti-viral drug screening, and a rapid potency assay for chimeric antigen receptor (CAR)-T therapy. An automated MOS imaging pipeline combined with machine learning overcomes plating variation, distinguishes tumorspheres from stroma, differentiates cytostatic versus cytotoxic drug effects, and captures resistant clones and heterogeneity in drug response. This pipeline is capable of robust assessments of drug response at individual-tumorsphere resolution and provides a rapid and high-throughput therapeutic profiling platform for precision medicine.Item Open Access SARS-CoV-2 Infections Among Children in the Biospecimens from Respiratory Virus-Exposed Kids (BRAVE Kids) Study.(Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2020-11-03) Hurst, Jillian H; Heston, Sarah M; Chambers, Hailey N; Cunningham, Hannah M; Price, Meghan J; Suarez, Lilianna; Crew, Carter G; Bose, Shree; Aquino, Jhoanna N; Carr, Stuart T; Griffin, S Michelle; Smith, Stephanie H; Jenkins, Kirsten; Pfeiffer, Trevor S; Rodriguez, Javier; DeMarco, C Todd; De Naeyer, Nicole A; Gurley, Thaddeus C; Louzao, Raul; Zhao, Congwen; Cunningham, Coleen K; Steinbach, William J; Denny, Thomas N; Lugo, Debra J; Moody, M Anthony; Permar, Sallie R; Rotta, Alexandre T; Turner, Nicholas A; Walter, Emmanuel B; Woods, Christopher W; Kelly, Matthew SBACKGROUND:Children with SARS-CoV-2 infection typically have mild symptoms that do not require medical attention, leaving a gap in our understanding of the spectrum of illnesses that the virus causes in children. METHODS:We conducted a prospective cohort study of children and adolescents (<21 years of age) with a SARS-CoV-2-infected close contact. We collected nasopharyngeal or nasal swabs at enrollment and tested for SARS-CoV-2 using a real-time PCR assay. RESULTS:Of 382 children, 293 (77%) were SARS-CoV-2-infected. SARS-CoV-2-infected children were more likely to be Hispanic (p<0.0001), less likely to have asthma (p=0.005), and more likely to have an infected sibling contact (p=0.001) than uninfected children. Children ages 6-13 years were frequently asymptomatic (39%) and had respiratory symptoms less often than younger children (29% vs. 48%; p=0.01) or adolescents (29% vs. 60%; p<0.0001). Compared to children ages 6-13 years, adolescents more frequently reported influenza-like (61% vs. 39%; p<0.0001), gastrointestinal (27% vs. 9%; p=0.002), and sensory symptoms (42% vs. 9%; p<0.0001), and had more prolonged illnesses [median (IQR) duration: 7 (4, 12) vs. 4 (3, 8) days; p=0.01]. Despite the age-related variability in symptoms, we found no differences in nasopharyngeal viral load by age or between symptomatic and asymptomatic children. CONCLUSIONS:Hispanic ethnicity and an infected sibling close contact are associated with increased SARS-CoV-2 infection risk among children, while asthma is associated with decreased risk. Age-related differences in the clinical manifestations of SARS-CoV-2 infection must be considered when evaluating children for COVID-19 and in developing screening strategies for schools and childcare settings.Item Open Access SARS-CoV-2 Infections Among Children in the Biospecimens from Respiratory Virus-Exposed Kids (BRAVE Kids) Study.(medRxiv, 2020-09-01) Hurst, Jillian H; Heston, Sarah M; Chambers, Hailey N; Cunningham, Hannah M; Price, Meghan J; Suarez, Liliana; Crew, Carter G; Bose, Shree; Aquino, Jhoanna N; Carr, Stuart T; Griffin, S Michelle; Smith, Stephanie H; Jenkins, Kirsten; Pfeiffer, Trevor S; Rodriguez, Javier; DeMarco, C Todd; De Naeyer, Nicole A; Gurley, Thaddeus C; Louzao, Raul; Cunningham, Coleen K; Steinbach, William J; Denny, Thomas N; Lugo, Debra J; Moody, M Anthony; Permar, Sallie R; Rotta, Alexandre T; Turner, Nicholas A; Walter, Emmanuel B; Woods, Christopher W; Kelly, Matthew SBACKGROUND: Children with SARS-CoV-2 infection typically have mild symptoms that do not require medical attention, leaving a gap in our understanding of the spectrum of illnesses that the virus causes in children. METHODS: We conducted a prospective cohort study of children and adolescents (<21 years of age) with a SARS-CoV-2-infected close contact. We collected nasopharyngeal or nasal swabs at enrollment and tested for SARS-CoV-2 using a real-time PCR assay. RESULTS: Of 382 children, 289 (76%) were SARS-CoV-2-infected. SARS-CoV-2-infected children were more likely to be Hispanic (p<0.0001), less likely to have a history of asthma (p=0.009), and more likely to have an infected sibling contact (p=0.0007) than uninfected children. Children ages 6-13 years were frequently asymptomatic (38%) and had respiratory symptoms less often than younger children (30% vs. 49%; p=0.008) or adolescents (30% vs. 59%; p<0.0001). Compared to children ages 6-13 years, adolescents more frequently reported influenza-like (61% vs. 39%; p=0.002), gastrointestinal (26% vs. 9%; p=0.003), and sensory symptoms (43% vs. 9%; p<0.0001), and had more prolonged illnesses [median (IQR) duration: 7 (4, 12) vs. 4 (3, 8) days; p=0.004]. Despite the age-related variability in symptoms, we found no differences in nasopharyngeal viral load by age or between symptomatic and asymptomatic children. CONCLUSIONS: Hispanic ethnicity and an infected sibling close contact are associated with increased SARS-CoV-2 infection risk among children, while a history of asthma is associated with decreased risk. Age-related differences in the clinical manifestations of SARS-CoV-2 infection must be considered when evaluating children for COVID-19 and in developing screening strategies for schools and childcare settings.