Browsing by Author "Bowles, Dawn E"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access An isolated working heart system for large animal models.(J Vis Exp, 2014-06-11) Schechter, Matthew A; Southerland, Kevin W; Feger, Bryan J; Linder, Dean; Ali, Ayyaz A; Njoroge, Linda; Milano, Carmelo A; Bowles, Dawn ESince its introduction in the late 19(th) century, the Langendorff isolated heart perfusion apparatus, and the subsequent development of the working heart model, have been invaluable tools for studying cardiovascular function and disease(1-15). Although the Langendorff heart preparation can be used for any mammalian heart, most studies involving this apparatus use small animal models (e.g., mouse, rat, and rabbit) due to the increased complexity of systems for larger mammals(1,3,11). One major difficulty is ensuring a constant coronary perfusion pressure over a range of different heart sizes - a key component of any experiment utilizing this device(1,11). By replacing the classic hydrostatic afterload column with a centrifugal pump, the Langendorff working heart apparatus described below allows for easy adjustment and tight regulation of perfusion pressures, meaning the same set-up can be used for various species or heart sizes. Furthermore, this configuration can also seamlessly switch between constant pressure or constant flow during reperfusion, depending on the user's preferences. The open nature of this setup, despite making temperature regulation more difficult than other designs, allows for easy collection of effluent and ventricular pressure-volume data.Item Open Access Mdm2 regulates cardiac contractility by inhibiting GRK2-mediated desensitization of β-adrenergic receptor signaling.(JCI insight, 2017-09) Jean-Charles, Pierre-Yves; Yu, Samuel Mon-Wei; Abraham, Dennis; Kommaddi, Reddy Peera; Mao, Lan; Strachan, Ryan T; Zhang, Zhu-Shan; Bowles, Dawn E; Brian, Leigh; Stiber, Jonathan A; Jones, Stephen N; Koch, Walter J; Rockman, Howard A; Shenoy, Sudha KThe oncoprotein Mdm2 is a RING domain-containing E3 ubiquitin ligase that ubiquitinates G protein-coupled receptor kinase 2 (GRK2) and β-arrestin2, thereby regulating β-adrenergic receptor (βAR) signaling and endocytosis. Previous studies showed that cardiac Mdm2 expression is critical for controlling p53-dependent apoptosis during early embryonic development, but the role of Mdm2 in the developed adult heart is unknown. We aimed to identify if Mdm2 affects βAR signaling and cardiac function in adult mice. Using Mdm2/p53-KO mice, which survive for 9-12 months, we identified a critical and potentially novel role for Mdm2 in the adult mouse heart through its regulation of cardiac β1AR signaling. While baseline cardiac function was mostly similar in both Mdm2/p53-KO and wild-type (WT) mice, isoproterenol-induced cardiac contractility in Mdm2/p53-KO was significantly blunted compared with WT mice. Isoproterenol increased cAMP in left ventricles of WT but not of Mdm2/p53-KO mice. Additionally, while basal and forskolin-induced calcium handling in isolated Mdm2/p53-KO and WT cardiomyocytes were equivalent, isoproterenol-induced calcium handling in Mdm2/p53-KO was impaired. Mdm2/p53-KO hearts expressed 2-fold more GRK2 than WT. GRK2 polyubiquitination via lysine-48 linkages was significantly reduced in Mdm2/p53-KO hearts. Tamoxifen-inducible cardiomyocyte-specific deletion of Mdm2 in adult mice also led to a significant increase in GRK2, and resulted in severely impaired cardiac function, high mortality, and no detectable βAR responsiveness. Gene delivery of either Mdm2 or GRK2-CT in vivo using adeno-associated virus 9 (AAV9) effectively rescued β1AR-induced cardiac contractility in Mdm2/p53-KO. These findings reveal a critical p53-independent physiological role of Mdm2 in adult hearts, namely, regulation of GRK2-mediated desensitization of βAR signaling.Item Open Access Microgravity induces proteomics changes involved in endoplasmic reticulum stress and mitochondrial protection.(Scientific reports, 2016-09-27) Feger, Bryan J; Thompson, J Will; Dubois, Laura G; Kommaddi, Reddy P; Foster, Matthew W; Mishra, Rajashree; Shenoy, Sudha K; Shibata, Yoichiro; Kidane, Yared H; Moseley, M Arthur; Carnell, Lisa S; Bowles, Dawn EOn Earth, biological systems have evolved in response to environmental stressors, interactions dictated by physical forces that include gravity. The absence of gravity is an extreme stressor and the impact of its absence on biological systems is ill-defined. Astronauts who have spent extended time under conditions of minimal gravity (microgravity) experience an array of biological alterations, including perturbations in cardiovascular function. We hypothesized that physiological perturbations in cardiac function in microgravity may be a consequence of alterations in molecular and organellar dynamics within the cellular milieu of cardiomyocytes. We used a combination of mass spectrometry-based approaches to compare the relative abundance and turnover rates of 848 and 196 proteins, respectively, in rat neonatal cardiomyocytes exposed to simulated microgravity or normal gravity. Gene functional enrichment analysis of these data suggested that the protein content and function of the mitochondria, ribosomes, and endoplasmic reticulum were differentially modulated in microgravity. We confirmed experimentally that in microgravity protein synthesis was decreased while apoptosis, cell viability, and protein degradation were largely unaffected. These data support our conclusion that in microgravity cardiomyocytes attempt to maintain mitochondrial homeostasis at the expense of protein synthesis. The overall response to this stress may culminate in cardiac muscle atrophy.Item Open Access Phosphoproteomic profiling of human myocardial tissues distinguishes ischemic from non-ischemic end stage heart failure.(PLoS One, 2014) Schechter, Matthew A; Hsieh, Michael KH; Njoroge, Linda W; Thompson, J Will; Soderblom, Erik J; Feger, Bryan J; Troupes, Constantine D; Hershberger, Kathleen A; Ilkayeva, Olga R; Nagel, Whitney L; Landinez, Gina P; Shah, Kishan M; Burns, Virginia A; Santacruz, Lucia; Hirschey, Matthew D; Foster, Matthew W; Milano, Carmelo A; Moseley, M Arthur; Piacentino, Valentino; Bowles, Dawn EThe molecular differences between ischemic (IF) and non-ischemic (NIF) heart failure are poorly defined. A better understanding of the molecular differences between these two heart failure etiologies may lead to the development of more effective heart failure therapeutics. In this study extensive proteomic and phosphoproteomic profiles of myocardial tissue from patients diagnosed with IF or NIF were assembled and compared. Proteins extracted from left ventricular sections were proteolyzed and phosphopeptides were enriched using titanium dioxide resin. Gel- and label-free nanoscale capillary liquid chromatography coupled to high resolution accuracy mass tandem mass spectrometry allowed for the quantification of 4,436 peptides (corresponding to 450 proteins) and 823 phosphopeptides (corresponding to 400 proteins) from the unenriched and phospho-enriched fractions, respectively. Protein abundance did not distinguish NIF from IF. In contrast, 37 peptides (corresponding to 26 proteins) exhibited a ≥ 2-fold alteration in phosphorylation state (p<0.05) when comparing IF and NIF. The degree of protein phosphorylation at these 37 sites was specifically dependent upon the heart failure etiology examined. Proteins exhibiting phosphorylation alterations were grouped into functional categories: transcriptional activation/RNA processing; cytoskeleton structure/function; molecular chaperones; cell adhesion/signaling; apoptosis; and energetic/metabolism. Phosphoproteomic analysis demonstrated profound post-translational differences in proteins that are involved in multiple cellular processes between different heart failure phenotypes. Understanding the roles these phosphorylation alterations play in the development of NIF and IF has the potential to generate etiology-specific heart failure therapeutics, which could be more effective than current therapeutics in addressing the growing concern of heart failure.Item Open Access Utility of telomerase-pot1 fusion protein in vascular tissue engineering.(Cell Transplant, 2010) Petersen, Thomas H; Hitchcock, Thomas; Muto, Akihito; Calle, Elizabeth A; Zhao, Liping; Gong, Zhaodi; Gui, Liqiong; Dardik, Alan; Bowles, Dawn E; Counter, Christopher M; Niklason, Laura EWhile advances in regenerative medicine and vascular tissue engineering have been substantial in recent years, important stumbling blocks remain. In particular, the limited life span of differentiated cells that are harvested from elderly human donors is an important limitation in many areas of regenerative medicine. Recently, a mutant of the human telomerase reverse transcriptase enzyme (TERT) was described, which is highly processive and elongates telomeres more rapidly than conventional telomerase. This mutant, called pot1-TERT, is a chimeric fusion between the DNA binding protein pot1 and TERT. Because pot1-TERT is highly processive, it is possible that transient delivery of this transgene to cells that are utilized in regenerative medicine applications may elongate telomeres and extend cellular life span while avoiding risks that are associated with retroviral or lentiviral vectors. In the present study, adenoviral delivery of pot1-TERT resulted in transient reconstitution of telomerase activity in human smooth muscle cells, as demonstrated by telomeric repeat amplification protocol (TRAP). In addition, human engineered vessels that were cultured using pot1-TERT-expressing cells had greater collagen content and somewhat better performance in vivo than control grafts. Hence, transient delivery of pot1-TERT to elderly human cells may be useful for increasing cellular life span and improving the functional characteristics of resultant tissue-engineered constructs.