Browsing by Author "Brannon, Elizabeth M"
- Results Per Page
- Sort Options
Item Open Access Comparative Studies of Numerical Cognition in Nonhuman Primates: From Numerical Comparison to Arithmetic(2012) Jones, Sarah MychalThere is a long-standing claim that humans and nonhuman primates share an evolutionarily ancient system of nonverbal number representation. By and large, the focus in the field has been on providing existence proofs of numerical competence in wide-ranging taxa or using individual species as models for comparisons with humans. Recent findings in numerical cognition have suggested that evidence for approximate numerical abilities in nonhuman species may indicate that humans and animals share a cognitive system for representing numerosities nonverbally. To date, little is known about the contextual and quantitative limits of that system, or how those limits differ between species. The studies presented here take a comparative, behavioral approach to characterizing species differences and similarities in the approximate number system, and the contexts that affect that system. Collectively, this set of studies provides evidence that the approximate number system evolved in primates as a malleable system in which numerical representations are accessed spontaneously and improved through training. Despite the sensitivity of the system to experience and context individual differences in sensitivity are greater than species differences suggesting that the selective pressures that constrained its evolution were early and general and that species variation in social group size and diet have less influence on the ANS. Finally my studies indicate that the ANS supports approximate arithmetic and is consistent with the idea that ANS representations evolved to allow animals to calculate the world around them.
Item Open Access Decision-Making in the Primate Brain(2016) Drucker, Caroline BethMaking decisions is fundamental to everything we do, yet it can be impaired in various disorders and conditions. While research into the neural basis of decision-making has flourished in recent years, many questions remain about how decisions are instantiated in the brain. Here we explored how primates make abstract decisions and decisions in social contexts, as well as one way to non-invasively modulate the brain circuits underlying decision-making. We used rhesus macaques as our model organism. First we probed numerical decision-making, a form of abstract decision-making. We demonstrated that monkeys are able to compare discrete ratios, choosing an array with a greater ratio of positive to negative stimuli, even when this array does not have a greater absolute number of positive stimuli. Monkeys’ performance in this task adhered to Weber’s law, indicating that monkeys—like humans—treat proportions as analog magnitudes. Next we showed that monkeys’ ordinal decisions are influenced by spatial associations; when trained to select the fourth stimulus from the bottom in a vertical array, they subsequently selected the fourth stimulus from the left—and not from the right—in a horizontal array. In other words, they begin enumerating from one side of space and not the other, mirroring the human tendency to associate numbers with space. These and other studies confirmed that monkeys’ numerical decision-making follows similar patterns to that of humans, making them a good model for investigations of the neurobiological basis of numerical decision-making.
We sought to develop a system for exploring the neuronal basis of the cognitive and behavioral effects observed following transcranial magnetic stimulation, a relatively new, non-invasive method of brain stimulation that may be used to treat clinical disorders. We completed a set of pilot studies applying offline low-frequency repetitive transcranial magnetic stimulation to the macaque posterior parietal cortex, which has been implicated in numerical processing, while subjects performed a numerical comparison and control color comparison task, and while electrophysiological activity was recorded from the stimulated region of cortex. We found tentative evidence in one paradigm that stimulation did selectively impair performance in the number task, causally implicating the posterior parietal cortex in numerical decisions. In another paradigm, however, we manipulated the subject’s reaching behavior but not her number or color comparison performance. We also found that stimulation produced variable changes in neuronal firing and local field potentials. Together these findings lay the groundwork for detailed investigations into how different parameters of transcranial magnetic stimulation can interact with cortical architecture to produce various cognitive and behavioral changes.
Finally, we explored how monkeys decide how to behave in competitive social interactions. In a zero-sum computer game in which two monkeys played as a shooter or a goalie during a hockey-like “penalty shot” scenario, we found that shooters developed complex movement trajectories so as to conceal their intentions from the goalies. Additionally, we found that neurons in the dorsolateral and dorsomedial prefrontal cortex played a role in generating this “deceptive” behavior. We conclude that these regions of prefrontal cortex form part of a circuit that guides decisions to make an individual less predictable to an opponent.
Item Open Access Development of Decision-Making Under Risk(2012) Paulsen, David JayDecision-making under risk has been of interest to philosophers for centuries. in Only in recent years through interdisciplinary approaches has knowledge concerning the descriptive nature of decision-making under risk increased. Although we know that risk-preference proceeds from a risk-seeking trend in childhood to risk-aversion in adulthood, little is known about the factors that contribute this development. The studies presented here take an interdisciplinary approach to identifying the factors that contribute to age-related changes in risk preference, where in the decision-making process these factors have influence, and changes in neural circuitry that could be responsible. The work presented herein finds that risk-preference is differentially modulated across development by risk level, the values of choice options, and the domain (gains or loss) in which options are presented. During valuation, many brain regions that have previously been associated with decision-making and risk were found to increase in activation with age, suggesting the maturation of a decision-making network. Activation in a few key areas were associated with greater risk-aversion in children, suggesting that maturation of the decision-making network leads to more adult-like behavior. The cognitive component of children's greater risk-seeking was not found to be a deficiency in probabilistic reasoning, the ability to learn from negative feedback, or a general optimism for winning. Rather, children's valuation of a gamble may be exaggerated by a disproportionate amount of attention given to the winning outcome of a gamble. It is further speculated that a lack of regret during outcome evaluation may also contribute to differences in children's risk preference compared to adults.
Item Open Access From Magnitudes to Math: Developmental Precursors of Quantitative Reasoning(2015) Starr, ArielThe uniquely human mathematical mind sets us apart from all other animals. Although humans typically think about number symbolically, we also possess nonverbal representations of quantity that are present at birth and shared with many other animal species. These primitive numerical representations are thought to arise from an evolutionarily ancient system termed the Approximate Number System (ANS). The present dissertation aims to determine how these preverbal representations of quantity may serve as the foundation for more complex quantitative reasoning abilities. To this end, the five studies contained herein investigate the relations between representations of number, representations of other magnitude dimensions, and symbolic math proficiency in infants, children, and adults. The first empirical study, described in Chapter 2, investigated whether infants engage the ANS to represent the full range of natural numbers. The study presented in Chapter 3 compared infants' acuity for detecting changes in contour length to their acuity for detecting changes in number to assess whether representations of continuous quantities are primary to representations of number in infancy. The study presented in Chapter 4 compared individual differences in acuity for number, line length, and brightness in children and adults to determine how the relations between these magnitudes may change over development. Chapter 5 contains a longitudinal study investigating the relation between preverbal number sense in infancy and symbolic math abilities in preschool-aged children. Finally, the study presented in Chapter 6 investigated the mechanisms underlying the maturation of the number sense and determined which features of the number sense are predictive of symbolic math skill. Taken together, these findings confirm that number is a salient feature of the environment for infants and young children and suggest that approximate number representations are fundamental for the acquisition of symbolic math.
Item Open Access Functional imaging of numerical processing in adults and 4-y-old children.(PLoS biology, 2006-05-01) Cantlon, Jessica F; Brannon, Elizabeth M; Carter, Elizabeth J; Pelphrey, Kevin AAdult humans, infants, pre-school children, and non-human animals appear to share a system of approximate numerical processing for non-symbolic stimuli such as arrays of dots or sequences of tones. Behavioral studies of adult humans implicate a link between these non-symbolic numerical abilities and symbolic numerical processing (e.g., similar distance effects in accuracy and reaction-time for arrays of dots and Arabic numerals). However, neuroimaging studies have remained inconclusive on the neural basis of this link. The intraparietal sulcus (IPS) is known to respond selectively to symbolic numerical stimuli such as Arabic numerals. Recent studies, however, have arrived at conflicting conclusions regarding the role of the IPS in processing non-symbolic, numerosity arrays in adulthood, and very little is known about the brain basis of numerical processing early in development. Addressing the question of whether there is an early-developing neural basis for abstract numerical processing is essential for understanding the cognitive origins of our uniquely human capacity for math and science. Using functional magnetic resonance imaging (fMRI) at 4-Tesla and an event-related fMRI adaptation paradigm, we found that adults showed a greater IPS response to visual arrays that deviated from standard stimuli in their number of elements, than to stimuli that deviated in local element shape. These results support previous claims that there is a neurophysiological link between non-symbolic and symbolic numerical processing in adulthood. In parallel, we tested 4-y-old children with the same fMRI adaptation paradigm as adults to determine whether the neural locus of non-symbolic numerical activity in adults shows continuity in function over development. We found that the IPS responded to numerical deviants similarly in 4-y-old children and adults. To our knowledge, this is the first evidence that the neural locus of adult numerical cognition takes form early in development, prior to sophisticated symbolic numerical experience. More broadly, this is also, to our knowledge, the first cognitive fMRI study to test healthy children as young as 4 y, providing new insights into the neurophysiology of human cognitive development.Item Open Access How does cognition evolve? Phylogenetic comparative psychology.(Anim Cogn, 2012-03) MacLean, Evan L; Matthews, Luke J; Hare, Brian A; Nunn, Charles L; Anderson, Rindy C; Aureli, Filippo; Brannon, Elizabeth M; Call, Josep; Drea, Christine M; Emery, Nathan J; Haun, Daniel BM; Herrmann, Esther; Jacobs, Lucia F; Platt, Michael L; Rosati, Alexandra G; Sandel, Aaron A; Schroepfer, Kara K; Seed, Amanda M; Tan, Jingzhi; van Schaik, Carel P; Wobber, VictoriaNow more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.Item Open Access Inter-Parietal White Matter Development Predicts Numerical Performance in Young Children.(Learn Individ Differ, 2011-12) Cantlon, Jessica F; Davis, Simon W; Libertus, Melissa E; Kahane, Jill; Brannon, Elizabeth M; Pelphrey, Kevin AIn an effort to understand the role of interhemispheric transfer in numerical development, we investigated the relationship between children's developing knowledge of numbers and the integrity of their white matter connections between the cerebral hemispheres (the corpus callosum). We used diffusion tensor imaging (DTI) tractography analyses to test the link between the development of the corpus callosum and performance on symbolic and non-symbolic numerical judgment tasks. We were especially interested in the interhemispheric connections of parietal cortex in 6-year-old children, because regions of parietal cortex have been implicated in the development of numerical skills by several prior studies. Our results revealed significant structural differences between children and adults in the fibers of the corpus callosum connecting the left and right parietal lobes. Importantly, these structural differences were predictive of individual differences among children in performance on numerical judgment tasks: children with poor numerical performance relative to their peers exhibited reduced white matter coherence in the fibers passing through the isthmus of the corpus callosum, which connects the parietal hemispheres.