Browsing by Author "Bryant, Robert L"
- Results Per Page
- Sort Options
Item Open Access A circle quotient of a $G_2$ coneAcharya, Bobby Samir; Bryant, Robert L; Salamon, SimonA study is made of $R^6$ as a singular quotient of the conical space $R^+\times CP^3$ with holonomy $G_2$ with respect to an obvious action by $U(1)$ on $CP^3$ with fixed points. Closed expressions are found for the induced metric, and for both the curvature and symplectic 2-forms characterizing the reduction. All these tensors are invariant by a diagonal action of $SO(3)$ on $R^6$, which can be used effectively to describe the resulting geometrical features.Item Open Access Complex and Lagrangian Engel Structures(2018) Zhao, ZhiyongIn this dissertation, we study the geometry of Engel structures, which are 2-plane fields on 4-manifolds satisfying a generic condition, that are compatible with other geometric structures. A \emph{complex} Engel structure is an Engel 2-plane field on a complex surface for which the 2-planes are complex lines. A \emph{Lagrangian} Engel structure is an Engel 2-plane field on a symplectic 4-manifold for which the 2-planes are Lagrangian with respect to the symplectic structure. We solve the equivalence problems for complex Engel structures and Lagrangian Engel structures and use the resulting structure equations to classify homogeneous complex Engel structures and homogeneous Lagrangian Engel structures. This allows us to determine all compact, homogeneous examples.
For complex Engel structures, compact manifolds that support homogeneous complex Engel structures are diffeomorphic to $S^1\times SU(2)$ or quotients of $\mathbb{C}^2$, $S^1\times SU(2)$, $S^1\times G$ or $H$ by co-compact lattices, where $G$ is the connected and simply-connected Lie group with Lie algebra $\mathfrak{sl}_2(\mathbb{R})$ and $H$ is a solvable Lie group. For Lagrangian Engel structures, compact manifolds that support homogeneous Lagrangian Engel structures are diffeomorphic to quotients of one of a determined list of nilpotent or solvable 4-dimensional Lie groups by co-compact lattices.
Item Open Access Geometry of Bäcklund Transformations(2018) Hu, YuhaoThis thesis is a study of B\"acklund transformations using geometric methods. A B\"acklund transformation is a way to relate solutions of two PDE systems. If such a relation exists for a pair of PDE systems, then, using a given solution of one system, one can generate solutions of the other system by solving only ODEs.
My contribution through this thesis is in three aspects.
First, using Cartan's Method of Equivalence, I prove the generality result: a generic rank-1 B\"acklund transformation relating a pair of hyperbolic Monge-Amp\`ere systems can be uniquely determined by specifying at most 6 functions of 3 variables. In my classification of a more restricted case, I obtain new examples of B\"acklund transformations, which satisfy various isotropy conditions.
Second, by formulating the existence problem of B\"acklund transformations as the integration problem of a Pfaffian system, I propose a method to study how a B\"acklund transformation relates the invariants of the underlying hyperbolic Monge-Amp\`ere systems. This leads to several general results.
Third, I apply the method of equivalence to study rank-$2$ B\"acklund transformations relating two hyperbolic Monge-Amp\`ere systems and partially classify those that are homogeneous. My classification so far suggests that those homogeneous B\"acklund transformations (relating two hyperbolic Monge-Amp\`ere systems) that are genuinely rank-2 are quite few.
Item Open Access Geometry of SU(3) Manifolds(2008-05-14) Xu, FengI study differential geometry of 6-manifolds endowed with various $SU(3)$ structures from three perspectives. The first is special Lagrangian geometry; The second is pseudo-Hermitian-Yang-Mills connections or more generally, $\omega$-anti-self dual instantons; The third is pseudo-holomorphic curves.
For the first perspective, I am interested in the interplay between $SU(3)$ structures and their special Lagrangian submanifolds. More precisely, I study $SU(3)$-structures which locally support as `nice' special Lagrangian geometry as Calabi-Yau 3-folds do. Roughly speaking, this means that there should be a local special Lagrangian submanifold tangent to any special Lagrangian 3-plane. I call these $SU(3)$-structures {\it admissible}. By employing Cartan-K\"ahler machinery, I show that locally such admissible $SU(3)$-structures are abundant and much more general than local Calabi-Yau structures. However, the moduli space of the compact special Lagrangian submanifolds is not so well-behaved in an admissible $SU(3)$-manifold as in the Calabi-Yau case. For this reason, I narrow attention to {\it nearly Calabi-Yau} manifolds, for which the special Lagrangian moduli space is smooth. I compute the local generality of nearly Calabi-Yau structures and find that they are still much more general than Calabi-Yau structures. I also discuss the relationship between nearly Calabi-Yau and half flat $SU(3)$-structures. To construct complete or compact admissible examples, I study the twistor spaces of Riemannian 4-manifolds. It turns out that twistor spaces over self-dual Einstein 4-manifolds provide admissible and nearly Calabi-Yau manifolds. I also construct some explicit special Lagrangian examples in nearly K\"ahler $\mathbf{CP}^3$ and the twistor space of $H^4$.
For the second perspective, we are mainly interested in pseudo-Hermitian-Yang-Mills connections on nearly K\"ahler six manifolds. Pseudo-Hermitian-Yang-Mills connections were introduced by R. Bryant in \cite{BryantAlmCplx} to generalize Hermitian-Yang-Mills concept in K\"ahler geometry to almost complex geometry. If the $SU(3)$ structure is nearly K\"ahler, I show that pseudo-Hermitian-Yang-Mills connections (or, more generally, $\omega$-anti-self-dual instantons) enjoy many nice properties. For example, they satisfies the Yang-Mills equation and thus removable singularity results hold for such connections. Moreover, they are critical points of a Chern-Simons functional. I derive a Weitzenb\"ock formula for the deformation and discuss some of its application. I construct some explicit examples which display interesting singularities.
For the third perspective, I study pseudo-holomorphic curves in nearly K\"ahler $\mathbf{CP}^3$. I construct a one-to-one correspondence between {\it null torsion} curves in the nearly K\"ahler $\mathbf{CP}^3$ and contact curves in the K\"ahler $\mathbb{CP}^3$ (considered as a complex contact manifold). From this, I derive a Weierstrass formula for all {\it null torsion} curves by employing a result of R. Bryant in \cite{BryantS^4}. In this way, I classify all pseudo-holomorphic curves of genus~$0$.
Item Open Access Harmonic morphisms with fibers of dimension one(Communications in Analysis and Geometry, 2000-04-01) Bryant, Robert LThe harmonic morphisms φ : Mn+1 → Nn are studied using the methods of the moving frame and exterior differential systems and three main results are achieved. The first result is a local structure theorem for such maps in the case that φ is a submersion, in particular, a normal form is found for all such φ once the metric on the target manifold N is specified. The second result is a finiteness theorem, which says, in a certain sense, that, when n ≥ 3, the set of harmonic morphisms with a given Riemannian domain (Mn+1,g) is a finite dimensional space. The third result is the explicit classification when n ≥ 3 of all local and global harmonic morphisms with domain (Mn+1,g), a space of constant curvature.Item Open Access Integrability of Second-Order Partial Differential Equations and the Geometry of GL(2)-Structures(2009) Smith, Abraham DavidA GL(2,R)-structure on a smooth manifold of dimension n+1 corresponds to a distribution of non-degenerate rational normal cones over the manifold. Such a structure is called k-integrable if there exist many foliations by submanifolds of dimension k whose tangent spaces are spanned by vectors in the cones.
This structure was first studied by Bryant for n=3 and k=2. The work included here (n=4 and k=2,3) was suggested by Ferapontov, et al., who showed that the cases (n=4,k=2) and (n=4, k=3) can arise from integrability of second-order PDEs via hydrodynamic reductions.
Cartan--Kahler analysis for n=4 and k=3 leads to a complete classification of local structures into 54 equivalence classes determined by the value of an essential 9-dimensional representation of torsion for the GL(2,R)-structure. These classes are described by the factorization root-types of real binary octic polynomials. Each of these classes must arise from a PDE, but the PDEs remain to be identified.
Also, we study the local problem for n >= 5 and k=2,3 and conjecture that similar classifications exist for these cases; however, the interesting integrability results are essentially unique to degree 4. The approach is that of moving frames, using Cartan's method of equivalence, the Cartan--Kahler theorem, and Cartan's structure theorem.
Item Open Access Levi-flat Minimal Hypersurfaces in Two-dimensional Complex Space Forms(Adv. Stud. Pure Math., 37, Math. Soc. Japan, Tokyo, 2002, 1--44) Bryant, Robert LThe purpose of this article is to classify the real hypersurfaces in complex space forms of dimension 2 that are both Levi-flat and minimal. The main results are as follows: When the curvature of the complex space form is nonzero, there is a 1-parameter family of such hypersurfaces. Specifically, for each one-parameter subgroup of the isometry group of the complex space form, there is an essentially unique example that is invariant under this one-parameter subgroup. On the other hand, when the curvature of the space form is zero, i.e., when the space form is complex 2-space with its standard flat metric, there is an additional `exceptional' example that has no continuous symmetries but is invariant under a lattice of translations. Up to isometry and homothety, this is the unique example with no continuous symmetries.Item Open Access Notes on spinors in low dimensionBryant, Robert LThe purpose of these old notes (written in 1998 during a research project on holonomy of pseudo-Riemannian manifolds of type (10,1)) is to determine the orbit structure of the groups Spin(p,q) acting on their spinor spaces for the values (p,q) = (8,0), (9,0), (9,1), (10,0), (10,1), and (10,2). I'm making them available on the arXiv because I continue to get requests for them as well as questions about how they can be cited.Item Open Access Recent Advances in the Theory of Holonomy(Seminaire Bourbaki) Bryant, Robert LThis article is a report on the status of the problem of classifying the irriducibly acting subgroups of GL(n,R) that can appear as the holonomy of a torsion-free affine connection. In particular, it contains an account of the completion of the classification of these groups by Chi, Merkulov, and Schwachhofer as well as of the exterior differential systems analysis that shows that all of these groups do, in fact, occur. Some discussion of the results of Joyce on the existence of compact examples with holonomy G_2 or Spin(7) is also included.Item Open Access Remarks on the geometry of almost complex 6-manifolds(The Asian Journal of Mathematics) Bryant, Robert LThis article is mostly a writeup of two talks, the first given in the Besse Seminar at the Ecole Polytechnique in 1998 and the second given at the 2000 International Congress on Differential Geometry in memory of Alfred Gray in Bilbao, Spain. It begins with a discussion of basic geometry of almost complex 6-manifolds. In particular, I define a 2-parameter family of intrinsic first-order functionals on almost complex structures on 6-manifolds and compute their Euler-Lagrange equations. It also includes a discussion of a natural generalization of holomorphic bundles over complex manifolds to the almost complex case. The general almost complex manifold will not admit any nontrivial bundles of this type, but there is a large class of nonintegrable almost complex manifolds for which there are such nontrivial bundles. For example, the standard almost complex structure on the 6-sphere admits such nontrivial bundles. This class of almost complex manifolds in dimension 6 will be referred to as quasi-integrable. Some of the properties of quasi-integrable structures (both almost complex and unitary) are developed and some examples are given. However, it turns out that quasi-integrability is not an involutive condition, so the full generality of these structures in Cartan's sense is not well-understood.Item Open Access Ricci Yang-Mills Flow(2007-05-04T17:37:34Z) Streets, Jeffrey D.Let (Mn, g) be a Riemannian manifold. Say K ! E ! M is a principal K-bundle with connection A. We define a natural evolution equation for the pair (g,A) combining the Ricci flow for g and the Yang-Mills flow for A which we dub Ricci Yang-Mills flow. We show that these equations are, up to di eomorphism equivalence, the gradient flow equations for a Riemannian functional on M. Associated to this energy functional is an entropy functional which is monotonically increasing in areas close to a developing singularity. This entropy functional is used to prove a non-collapsing theorem for certain solutions to Ricci Yang-Mills flow. We show that these equations, after an appropriate change of gauge, are equivalent to a strictly parabolic system, and hence prove general unique short-time existence of solutions. Furthermore we prove derivative estimates of Bernstein-Shi type. These can be used to find a complete obstruction to long-time existence, as well as to prove a compactness theorem for Ricci Yang Mills flow solutions. Our main result is a fairly general long-time existence and convergence theorem for volume-normalized solutions to Ricci Yang-Mills flow. The limiting pair (g,A) satisfies equations coupling the Einstein and Yang-Mills conditions on g and A respectively. Roughly these conditions are that the associated curvature FA must be large, and satisfy a certain “stability” condition determined by a quadratic action of FA on symmetric two-tensors.Item Open Access Riemannian 3-Manifolds with a Flatness Condition(2019) Gunderson, RyanThe fundamental point-wise invariant of a Riemannian manifold $(M, g)$ is the Riemann curvature tensor. Many special types of Riemannian manifolds can be characterized by conditions on the Riemann curvature tensor and tensor fields derived from it. Examples include Einstein manifolds and conformally flat manifolds.
Here we restrict ourselves to three dimensions and explore the Remannian manifolds that arise when imposing conditions on the irreducible components of the first covariant derivative of the Riemann curvature tensor. Specifically, we look at an irreducible component of the covariant derivative which takes the form of a traceless symmetric $(0,3)$-tensor field. We classify the local and global structure of manifolds where this tensor field vanishes.
Item Open Access Second order families of special Lagrangian 3-folds(Perspectives in Riemannian Geometry, CRM Proceedings and Lecture Notes, edited by Vestislav Apostolov, Andrew Dancer, Nigel Hitchin, and McKenzie Wang, vol. 40 (2006), American Mathematical Society) Bryant, Robert LA second order family of special Lagrangian submanifolds of complex m-space is a family characterized by the satisfaction of a set of pointwise conditions on the second fundamental form. For example, the set of ruled special Lagrangian submanifolds of complex 3-space is characterized by a single algebraic equation on the second fundamental form. While the `generic' set of such conditions turns out to be incompatible, i.e., there are no special Lagrangian submanifolds that satisfy them, there are many interesting sets of conditions for which the corresponding family is unexpectedly large. In some cases, these geometrically defined families can be described explicitly, leading to new examples of special Lagrangian submanifolds. In other cases, these conditions characterize already known families in a new way. For example, the examples of Lawlor-Harvey constructed for the solution of the angle conjecture and recently generalized by Joyce turn out to be a natural and easily described second order family.Item Open Access Second-Order Families of Minimal Lagrangians in CP3(2019) Bell, Michael MoonIn this thesis we analyze families of minimal Lagrangian submanifolds of complex projective 3-space CP3 whose fundamental cubic forms satisfy geometrically natural conditions at every point, namely that their fundamental cubic form be preserved by a proper subgroup of SO(3). There is a classification of SO(3)-stabilizer types of such fundamental cubics, which shows there are precisely five families of such cubic forms: Those with stabilizers contained in SO(2), A4, S3, Z2, and Z3. We use the method of moving frames, along with exterior differential systems techniques to prove existence of minimal Lagrangian submanifolds with each stabilizer type. We also attempt to integrate the resulting structure equations to give explicit examples of each.
Item Open Access Seven-Dimensional Geometries With Special Torsion(2019) Ball, GavinI use the methods of exterior differential systems and the moving frame to study two geometric structures in seven dimensions related to $G_2$-geometry, and linked by the idea of special torsion. The torsion tensor of a geometric structure is a basic first-order invariant of the structure, and both of the geometries I study have special torsion, meaning that the image of their torsion tensor is constrained to lie in a smaller than usual subset.
In part 1, I study quadratic closed $G_2$-structures. A closed $G_2$-structure on a 7-manifold $M$ is given by a closed nondegenerate 3-form $\varphi$, and the quadratic condition, introduced by Bryant, says that $\varphi$ satisfies one of a particular natural one-parameter family of second order equations. The torsion tensor associated to a closed $G_2$-structure $\varphi$ takes values in $\mathfrak{g}_2$, and I study the cases where the image of this map lies in an exceptional $G_2$-orbit. A closed $G_2$-structure $\varphi$ induces a metric, and I give a classification of closed $G_2$-structures with conformally flat induced metric.
In part 2, I study $G_2$-structures endowed with a distribution of calibrated planes. In this situation there is an induced $SO(4)$-structure, and I invesitigate the cases where the $G_2$-structure is torsion-free and the induced $SO(4)$-structure has torsion tensor taking values in an irreducible $SO(4)$-module. Additionally, I give a classification of $SO(4)$-structures with invariant torsion, meaning that their torsion tensor takes values in a direct sum of trivial $SO(4)$-modules.
Item Open Access Some remarks on Finsler manifolds with constant flag curvature(Houston Journal of Mathematics, 2002) Bryant, Robert LThis article is an exposition of four loosely related remarks on the geometry of Finsler manifolds with constant positive flag curvature. The first remark is that there is a canonical Kahler structure on the space of geodesics of such a manifold. The second remark is that there is a natural way to construct a (not necessarily complete) Finsler n-manifold of constant positive flag curvature out of a hypersurface in suitably general position in complex projective n-space. The third remark is that there is a description of the Finsler metrics of constant curvature on the 2-sphere in terms of a Riemannian metric and 1-form on the space of its geodesics. In particular, this allows one to use any (Riemannian) Zoll metric of positive Gauss curvature on the 2-sphere to construct a global Finsler metric of constant positive curvature on the 2-sphere. The fourth remark concerns the generality of the space of (local) Finsler metrics of constant positive flag curvature in dimension n+1>2 . It is shown that such metrics depend on n(n+1) arbitrary functions of n+1 variables and that such metrics naturally correspond to certain torsion- free S^1 x GL(n,R)-structures on 2n-manifolds. As a by- product, it is found that these groups do occur as the holonomy of torsion-free affine connections in dimension 2n, a hitherto unsuspected phenomenon.Item Open Access The generality of closed G2 solitons(PURE AND APPLIED MATHEMATICS QUARTERLY, 2023) Bryant, Robert L