Browsing by Author "Cao, GF"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Event reconstruction in a liquid xenon Time Projection Chamber with an optically-open field cage(Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021-06-01) Stiegler, T; Sangiorgio, S; Brodsky, JP; Heffner, M; Kharusi, SA; Anton, G; Arnquist, IJ; Badhrees, I; Barbeau, PS; Beck, D; Belov, V; Bhatta, T; Bolotnikov, A; Breur, PA; Brown, E; Brunner, T; Caden, E; Cao, GF; Cao, L; Chambers, C; Chana, B; Charlebois, SA; Chiu, M; Cleveland, B; Coon, M; Craycraft, A; Dalmasson, J; Daniels, T; Darroch, L; De, A; Mesrobian-Kabakian, AD; Deslandes, K; DeVoe, R; Di Vacri, ML; Dilling, J; Ding, YY; Dolinski, MJ; Dragone, A; Echevers, J; Edaltafar, F; Elbeltagi, M; Fabris, L; Fairbank, D; Fairbank, W; Farine, J; Ferrara, S; Feyzbakhsh, S; Gallina, G; Gautam, P; Giacomini, G; Goeldi, D; Gornea, R; Gratta, G; Hansen, EV; Hoppe, EW; Hößl, J; House, A; Hughes, M; Iverson, A; Jamil, A; Jewell, MJ; Jiang, XS; Karelin, A; Kaufman, LJ; Koffas, T; Krücken, R; Kuchenkov, A; Kumar, KS; Lan, Y; Larson, A; Leach, KG; Lenardo, BG; Leonard, DS; Li, G; Li, S; Li, Z; Licciardi, C; Lv, P; MacLellan, R; Massacret, N; McElroy, T; Medina-Peregrina, M; Michel, T; Mong, B; Moore, DC; Murray, K; Nakarmi, P; Natzke, CR; Newby, RJ; Ni, K; Ning, Z; Njoya, O; Nolet, F; Nusair, O; Odgers, K; Odian, A; Oriunno, M; Orrell, JL; Ortega, GS; Ostrovskiy, InEXO is a proposed tonne-scale neutrinoless double beta decay (0νββ) experiment using liquid 136Xe (LXe) in a Time Projection Chamber (TPC) to read out ionization and scintillation signals. Between the field cage and the LXe vessel, a layer of LXe (“skin” LXe) is present, where no ionization signal is collected. Only scintillation photons are detected, owing to the lack of optical barrier around the field cage. In this work, we show that the light originating in the skin LXe region can be used to improve background discrimination by 5% over previous published estimates. This improvement comes from two elements. First, a fraction of the γ-ray background is removed by identifying light from interactions with an energy deposition in the skin LXe. Second, background from 222Rn dissolved in the skin LXe can be efficiently rejected by tagging the α decay in the 214Bi-214Po chain in the skin LXe.Item Open Access Search for Majoron-emitting modes of $^{136}$Xe double beta decay with the complete EXO-200 datasetKharusi, S Al; Anton, G; Badhrees, I; Barbeau, PS; Beck, D; Belov, V; Bhatta, T; Breidenbach, M; Brunner, T; Cao, GF; Cen, WR; Chambers, C; Cleveland, B; Coon, M; Craycraft, A; Daniels, T; Darroch, L; Daugherty, SJ; Davis, J; Delaquis, S; Mesrobian-Kabakian, A Der; DeVoe, R; Dilling, J; Dolgolenko, A; Dolinski, MJ; Echevers, J; Jr, W Fairbank; Fairbank, D; Farine, J; Feyzbakhsh, S; Fierlinger, P; Fudenberg, D; Gautam, P; Gornea, R; Gratta, G; Hall, C; Hansen, EV; Hoessl, J; Hufschmidt, P; Hughes, M; Iverson, A; Jamil, A; Jessiman, C; Jewell, MJ; Johnson, A; Karelin, A; Kaufman, LJ; Koffas, T; ucken, R Kr; Kuchenkov, A; Kumar, KS; Lan, Y; Larson, A; Lenardo, BG; Leonard, DS; Li, GS; Li, S; Li, Z; Licciardi, C; Lin, YH; MacLellan, R; McElroy, T; Michel, T; Mong, B; Moore, DC; Murray, K; Njoya, O; Nusair, O; Odian, A; Ostrovskiy, I; Perna, A; Piepke, A; Pocar, A; Retiere, F; Robinson, AL; Rowson, PC; Rudde, D; Runge, J; Schmidt, S; Sinclair, D; Skarpaas, K; Soma, AK; Stekhanov, V; Tarka, M; Thibado, S; Todd, J; Tolba, T; Totev, TI; Tsang, R; Veenstra, B; Veeraraghavan, V; Vogel, P; Vuilleumier, J-L; Wagenpfeil, M; Watkins, J; Weber, M; Wen, LJ; Wichoski, U; Wrede, G; Wu, SX; Xia, Q; Yahne, DR; Yang, L; Yen, Y-R; Zeldovich, O Ya; Ziegler, TA search for Majoron-emitting modes of the neutrinoless double-beta decay of $^{136}$Xe is performed with the full EXO-200 dataset. This dataset consists of a total $^{136}$Xe exposure of 234.1 kg$\cdot$yr, and includes data with detector upgrades that have improved the energy threshold relative to previous searches. A lower limit of T$_{1/2}^{\rm{^{136}Xe}}>$4.3$\cdot$10$^{24}$ yr at 90\% C.L. on the half-life of the spectral index $n=1$ Majoron decay was obtained, a factor of 3.6 more stringent than the previous limit from EXO-200, corresponding to a constraint on the Majoron-neutrino coupling constant of $|\langle g_{ee}^{M}\rangle|$$<(0.4$-$0.9)\cdot10^{-5}$. The lower threshold and the additional data taken resulted in a factor 8.4 improvement for the $n=7$ mode compared to the previous EXO search. This search provides the most stringent limits to-date on the Majoron-emitting decays of $^{136}$Xe with spectral indices $n=1,2,3,$ and 7.Item Open Access The EXO-200 detector, part II: Auxiliary SystemsAckerman, N; Albert, J; Auger, M; Auty, DJ; Badhrees, I; Barbeau, PS; Bartoszek, L; Baussan, E; Belov, V; Benitez-Medina, C; Bhatta, T; Breidenbach, M; Brunner, T; Cao, GF; Cen, WR; Chambers, C; Cleveland, B; Conley, R; Cook, S; Coon, M; Craddock, W; Craycraft, A; Cree, W; Daniels, T; Darroch, L; Daugherty, SJ; Daughhetee, J; Davis, CG; Davis, J; Delaquis, S; Mesrobian-Kabakian, A Der; deVoe, R; Didberidze, T; Dilling, J; Dobi, A; Dolgolenko, AG; Dolinski, MJ; Dunford, M; Echevers, J; Espic, L; Jr, W Fairbank; Fairbank, D; Farine, J; Feldmeier, W; Feyzbakhsh, S; Fierlinger, P; Fouts, K; Franco, D; Freytag, D; Fudenberg, D; Gautam, P; Giroux, G; Gornea, R; Graham, K; Gratta, G; Hagemann, C; Hall, C; Hall, K; Haller, G; Hansen, EV; Hargrove, C; Herbst, R; Herrin, S; Hodgson, J; Hughes, M; Iverson, A; Jamil, A; Jessiman, C; Jewell, MJ; Johnson, A; Johnson, TN; Johnston, S; Karelin, A; Kaufman, LJ; Killick, R; Koffas, T; Kravitz, S; Krücken, R; Kuchenkov, A; Kumar, KS; Lan, Y; Larson, A; Leonard, DS; Leonard, F; LePort, F; Li, GS; Li, S; Li, Z; Licciardi, C; Lin, YH; Mackay, D; MacLellan, R; Marino, M; Martin, J-M; Martin, Y; McElroy, T; McFarlane, K; Michel, T; Mong, B; Moore, DC; Murray, K; Neilson, R; Njoya, O; Nusair, O; O'Sullivan, K; Odian, A; Ostrovskiy, I; Ouellet, C; Piepke, A; Pocar, A; Prescott, CY; Pushkin, K; Retiere, F; Rivas, A; Robinson, AL; Rollin, E; Rowson, PC; Rozo, MP; Runge, J; Russell, JJ; Schmidt, S; Schubert, A; Sinclair, D; Skarpaas, K; Slutsky, S; Smith, E; Soma, AK; Stekhanov, V; Strickland, V; Swift, M; Tarka, M; Todd, J; Tolba, T; Tosi, D; Totev, TI; Tsang, R; Twelker, K; Veenstra, B; Veeraraghavan, V; Vuilleumier, J-L; Vuilleumier, J-M; Wagenpfeil, M; Waite, A; Walton, J; Walton, T; Wamba, K; Watkins, J; Weber, M; Wen, LJ; Wichoski, U; Wittgen, M; Wodin, J; Wood, J; Wrede, G; Wu, SX; Xia, Q; Yang, L; Yen, Y-R; Zeldovich, O Ya; Ziegler, TThe EXO-200 experiment searched for neutrinoless double-beta decay of $^{136}$Xe with a single-phase liquid xenon detector. It used an active mass of 110 kg of 80.6%-enriched liquid xenon in an ultra-low background time projection chamber with ionization and scintillation detection and readout. This paper describes the design and performance of the various support systems necessary for detector operation, including cryogenics, xenon handling, and controls. Novel features of the system were driven by the need to protect the thin-walled detector chamber containing the liquid xenon, to achieve high chemical purity of the Xe, and to maintain thermal uniformity across the detector.