Browsing by Author "Carbone, David P"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A Transcriptional Signature Identifies LKB1 Functional Status as a Novel Determinant of MEK Sensitivity in Lung Adenocarcinoma.(Cancer research, 2017-01) Kaufman, Jacob M; Yamada, Tadaaki; Park, Kyungho; Timmers, Cynthia D; Amann, Joseph M; Carbone, David PLKB1 is a commonly mutated tumor suppressor in non-small cell lung cancer that exerts complex effects on signal transduction and transcriptional regulation. To better understand the downstream impact of loss of functional LKB1, we developed a transcriptional fingerprint assay representing this phenotype. This assay was predictive of LKB1 functional loss in cell lines and clinical specimens, even those without detected sequence alterations in the gene. In silico screening of drug sensitivity data identified putative LKB1-selective drug candidates, revealing novel associations not apparent from analysis of LKB1 mutations alone. Among the candidates, MEK inhibitors showed robust association with signature expression in both training and testing datasets independent of RAS/RAF mutations. This susceptibility phenotype is directly altered by RNA interference-mediated LKB1 knockdown or by LKB1 re-expression into mutant cell lines and is readily observed in vivo using a xenograft model. MEK sensitivity is dependent on LKB1-induced changes in AKT and FOXO3 activation, consistent with genomic and proteomic analyses of LKB1-deficient lung adenocarcinomas. Our findings implicate the MEK pathway as a potential therapeutic target for LKB1-deficient cancers and define a practical NanoString biomarker to identify functional LKB1 loss. Cancer Res; 77(1); 153-63. ©2016 AACR.Item Open Access LKB1 Loss induces characteristic patterns of gene expression in human tumors associated with NRF2 activation and attenuation of PI3K-AKT.(Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer, 2014-06) Kaufman, Jacob M; Amann, Joseph M; Park, Kyungho; Arasada, Rajeswara Rao; Li, Haotian; Shyr, Yu; Carbone, David PInactivation of serine/threonine kinase 11 (STK11 or LKB1) is common in lung cancer, and understanding the pathways and phenotypes altered as a consequence will aid the development of targeted therapeutic strategies. Gene and protein expressions in a murine model of v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (Kras)-mutant lung cancer have been studied to gain insight into the biology of these tumors. However, the molecular consequences of LKB1 loss in human lung cancer have not been fully characterized.We studied gene expression profiles associated with LKB1 loss in resected lung adenocarcinomas, non-small-cell lung cancer cell lines, and murine tumors. The biological significance of dysregulated genes was interpreted using gene set enrichment and transcription factor analyses and also by integration with somatic mutations and proteomic data.Loss of LKB1 is associated with consistent gene expression changes in resected human lung cancers and cell lines that differ substantially from the mouse model. Our analysis implicates novel biological features associated with LKB1 loss, including altered mitochondrial metabolism, activation of the nuclear respiratory factor 2 (NRF2) transcription factor by kelch-like ECH-associated protein 1 (KEAP1) mutations, and attenuation of the phosphatidylinositiol 3-kinase and v-akt murine thymoma viral oncogene homolog (PI3K/AKT) pathway. Furthermore, we derived a 16-gene classifier that accurately predicts LKB1 mutations and loss by nonmutational mechanisms. In vitro, transduction of LKB1 into LKB1-mutant cell lines results in attenuation of this signature.Loss of LKB1 defines a subset of lung adenocarcinomas associated with characteristic molecular phenotypes and distinctive gene expression features. Studying these effects may improve our understanding of the biology of these tumors and lead to the identification of targeted treatment strategies.