Browsing by Author "Castillo-Martin, Mireia"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer.(Nature genetics, 2018-02) Chen, Ming; Zhang, Jiangwen; Sampieri, Katia; Clohessy, John G; Mendez, Lourdes; Gonzalez-Billalabeitia, Enrique; Liu, Xue-Song; Lee, Yu-Ru; Fung, Jacqueline; Katon, Jesse M; Menon, Archita Venugopal; Webster, Kaitlyn A; Ng, Christopher; Palumbieri, Maria Dilia; Diolombi, Moussa S; Breitkopf, Susanne B; Teruya-Feldstein, Julie; Signoretti, Sabina; Bronson, Roderick T; Asara, John M; Castillo-Martin, Mireia; Cordon-Cardo, Carlos; Pandolfi, Pier PaoloLipids, either endogenously synthesized or exogenous, have been linked to human cancer. Here we found that PML is frequently co-deleted with PTEN in metastatic human prostate cancer (CaP). We demonstrated that conditional inactivation of Pml in the mouse prostate morphs indolent Pten-null tumors into lethal metastatic disease. We identified MAPK reactivation, subsequent hyperactivation of an aberrant SREBP prometastatic lipogenic program, and a distinctive lipidomic profile as key characteristic features of metastatic Pml and Pten double-null CaP. Furthermore, targeting SREBP in vivo by fatostatin blocked both tumor growth and distant metastasis. Importantly, a high-fat diet (HFD) induced lipid accumulation in prostate tumors and was sufficient to drive metastasis in a nonmetastatic Pten-null mouse model of CaP, and an SREBP signature was highly enriched in metastatic human CaP. Thus, our findings uncover a prometastatic lipogenic program and lend direct genetic and experimental support to the notion that a Western HFD can promote metastasis.Item Open Access Compound haploinsufficiency of Dok2 and Dusp4 promotes lung tumorigenesis.(The Journal of clinical investigation, 2019-01) Chen, Ming; Zhang, Jiangwen; Berger, Alice H; Diolombi, Moussa S; Ng, Christopher; Fung, Jacqueline; Bronson, Roderick T; Castillo-Martin, Mireia; Thin, Tin Htwe; Cordon-Cardo, Carlos; Plevin, Robin; Pandolfi, Pier PaoloRecurrent broad-scale heterozygous deletions are frequently observed in human cancer. Here we tested the hypothesis that compound haploinsufficiency of neighboring genes at chromosome 8p promotes tumorigenesis. By targeting the mouse orthologs of human DOK2 and DUSP4 genes, which were co-deleted in approximately half of human lung adenocarcinomas, we found that compound-heterozygous deletion of Dok2 and Dusp4 in mice resulted in lung tumorigenesis with short latency and high incidence, and that their co-deletion synergistically activated MAPK signaling and promoted cell proliferation. Conversely, restoration of DOK2 and DUSP4 in lung cancer cells suppressed MAPK activation and cell proliferation. Importantly, in contrast to downregulation of DOK2 or DUSP4 alone, concomitant downregulation of DOK2 and DUSP4 was associated with poor survival in human lung adenocarcinoma. Therefore, our findings lend in vivo experimental support to the notion that compound haploinsufficiency, due to broad-scale chromosome deletions, constitutes a driving force in tumorigenesis.Item Open Access Ornithine Decarboxylase Is Sufficient for Prostate Tumorigenesis via Androgen Receptor Signaling.(The American journal of pathology, 2016-12) Shukla-Dave, Amita; Castillo-Martin, Mireia; Chen, Ming; Lobo, Jose; Gladoun, Nataliya; Collazo-Lorduy, Ana; Khan, Faisal M; Ponomarev, Vladimir; Yi, Zhengzi; Zhang, Weijia; Pandolfi, Pier P; Hricak, Hedvig; Cordon-Cardo, CarlosIncreased polyamine synthesis is known to play an important role in prostate cancer. We aimed to explore its functional significance in prostate tumor initiation and its link to androgen receptor (AR) signaling. For this purpose, we generated a new cell line derived from normal epithelial prostate cells (RWPE-1) with overexpression of ornithine decarboxylase (ODC) and used it for in vitro and in vivo experiments. We then comprehensively analyzed the expression of the main metabolic enzymes of the polyamine pathway and spermine abundance in 120 well-characterized cases of human prostate cancer and high-grade prostate intraepithelial neoplasia (HGPIN). Herein, we show that the ODC-overexpressing prostate cells underwent malignant transformation, revealing that ODC is sufficient for de novo tumor initiation in 94% of injected mice. This oncogenic capacity was acquired through alteration of critical signaling networks, including AR, EIF2, and mTOR/MAPK. RNA silencing experiments revealed the link between AR signaling and polyamine metabolism. Human prostate cancers consistently demonstrated up-regulation of the main polyamine enzymes analyzed (ODC, polyamine oxidase, and spermine synthase) and reduction of spermine. This phenotype was also dominant in HGPIN, rendering it a new biomarker of malignant transformation. In summary, we report that ODC plays a key role in prostate tumorigenesis and that the polyamine pathway is altered as early as HGPIN.Item Open Access Suppression of CHK1 by ETS Family Members Promotes DNA Damage Response Bypass and Tumorigenesis.(Cancer discovery, 2015-05) Lunardi, Andrea; Varmeh, Shohreh; Chen, Ming; Taulli, Riccardo; Guarnerio, Jlenia; Ala, Ugo; Seitzer, Nina; Ishikawa, Tomoki; Carver, Brett S; Hobbs, Robin M; Quarantotti, Valentina; Ng, Christopher; Berger, Alice H; Nardella, Caterina; Poliseno, Laura; Montironi, Rodolfo; Castillo-Martin, Mireia; Cordon-Cardo, Carlos; Signoretti, Sabina; Pandolfi, Pier PaoloUNLABELLED:The ETS family of transcription factors has been repeatedly implicated in tumorigenesis. In prostate cancer, ETS family members, such as ERG, ETV1, ETV4, and ETV5, are frequently overexpressed due to chromosomal translocations, but the molecular mechanisms by which they promote prostate tumorigenesis remain largely undefined. Here, we show that ETS family members, such as ERG and ETV1, directly repress the expression of the checkpoint kinase 1 (CHK1), a key DNA damage response cell-cycle regulator essential for the maintenance of genome integrity. Critically, we find that ERG expression correlates with CHK1 downregulation in human patients and demonstrate that Chk1 heterozygosity promotes the progression of high-grade prostatic intraepithelial neoplasia into prostatic invasive carcinoma in Pten(+) (/-) mice. Importantly, CHK1 downregulation sensitizes prostate tumor cells to etoposide but not to docetaxel treatment. Thus, we identify CHK1 as a key functional target of the ETS proto-oncogenic family with important therapeutic implications. SIGNIFICANCE:Genetic translocation and aberrant expression of ETS family members is a common event in different types of human tumors. Here, we show that through the transcriptional repression of CHK1, ETS factors may favor DNA damage accumulation and consequent genetic instability in proliferating cells. Importantly, our findings provide a rationale for testing DNA replication inhibitor agents in ETS-positive TP53-proficient tumors.