Browsing by Author "Castoe, Todd A"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes.(Genome Biol, 2012-01-31) St John, John A; Braun, Edward L; Isberg, Sally R; Miles, Lee G; Chong, Amanda Y; Gongora, Jaime; Dalzell, Pauline; Moran, Christopher; Bed'hom, Bertrand; Abzhanov, Arkhat; Burgess, Shane C; Cooksey, Amanda M; Castoe, Todd A; Crawford, Nicholas G; Densmore, Llewellyn D; Drew, Jennifer C; Edwards, Scott V; Faircloth, Brant C; Fujita, Matthew K; Greenwold, Matthew J; Hoffmann, Federico G; Howard, Jonathan M; Iguchi, Taisen; Janes, Daniel E; Khan, Shahid Yar; Kohno, Satomi; de Koning, Ap Jason; Lance, Stacey L; McCarthy, Fiona M; McCormack, John E; Merchant, Mark E; Peterson, Daniel G; Pollock, David D; Pourmand, Nader; Raney, Brian J; Roessler, Kyria A; Sanford, Jeremy R; Sawyer, Roger H; Schmidt, Carl J; Triplett, Eric W; Tuberville, Tracey D; Venegas-Anaya, Miryam; Howard, Jason T; Jarvis, Erich D; Guillette, Louis J; Glenn, Travis C; Green, Richard E; Ray, David AThe International Crocodilian Genomes Working Group (ICGWG) will sequence and assemble the American alligator (Alligator mississippiensis), saltwater crocodile (Crocodylus porosus) and Indian gharial (Gavialis gangeticus) genomes. The status of these projects and our planned analyses are described.Item Open Access The genome of the green anole lizard and a comparative analysis with birds and mammals.(Nature, 2011-08-31) Alföldi, Jessica; Di Palma, Federica; Grabherr, Manfred; Williams, Christina; Kong, Lesheng; Mauceli, Evan; Russell, Pamela; Lowe, Craig B; Glor, Richard E; Jaffe, Jacob D; Ray, David A; Boissinot, Stephane; Shedlock, Andrew M; Botka, Christopher; Castoe, Todd A; Colbourne, John K; Fujita, Matthew K; Moreno, Ricardo Godinez; ten Hallers, Boudewijn F; Haussler, David; Heger, Andreas; Heiman, David; Janes, Daniel E; Johnson, Jeremy; de Jong, Pieter J; Koriabine, Maxim Y; Lara, Marcia; Novick, Peter A; Organ, Chris L; Peach, Sally E; Poe, Steven; Pollock, David D; de Queiroz, Kevin; Sanger, Thomas; Searle, Steve; Smith, Jeremy D; Smith, Zachary; Swofford, Ross; Turner-Maier, Jason; Wade, Juli; Young, Sarah; Zadissa, Amonida; Edwards, Scott V; Glenn, Travis C; Schneider, Christopher J; Losos, Jonathan B; Lander, Eric S; Breen, Matthew; Ponting, Chris P; Lindblad-Toh, KerstinThe evolution of the amniotic egg was one of the great evolutionary innovations in the history of life, freeing vertebrates from an obligatory connection to water and thus permitting the conquest of terrestrial environments. Among amniotes, genome sequences are available for mammals and birds, but not for non-avian reptiles. Here we report the genome sequence of the North American green anole lizard, Anolis carolinensis. We find that A. carolinensis microchromosomes are highly syntenic with chicken microchromosomes, yet do not exhibit the high GC and low repeat content that are characteristic of avian microchromosomes. Also, A. carolinensis mobile elements are very young and diverse-more so than in any other sequenced amniote genome. The GC content of this lizard genome is also unusual in its homogeneity, unlike the regionally variable GC content found in mammals and birds. We describe and assign sequence to the previously unknown A. carolinensis X chromosome. Comparative gene analysis shows that amniote egg proteins have evolved significantly more rapidly than other proteins. An anole phylogeny resolves basal branches to illuminate the history of their repeated adaptive radiations.Item Open Access Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs.(Science, 2014-12-12) Green, Richard E; Braun, Edward L; Armstrong, Joel; Earl, Dent; Nguyen, Ngan; Hickey, Glenn; Vandewege, Michael W; St John, John A; Capella-Gutiérrez, Salvador; Castoe, Todd A; Kern, Colin; Fujita, Matthew K; Opazo, Juan C; Jurka, Jerzy; Kojima, Kenji K; Caballero, Juan; Hubley, Robert M; Smit, Arian F; Platt, Roy N; Lavoie, Christine A; Ramakodi, Meganathan P; Finger, John W; Suh, Alexander; Isberg, Sally R; Miles, Lee; Chong, Amanda Y; Jaratlerdsiri, Weerachai; Gongora, Jaime; Moran, Christopher; Iriarte, Andrés; McCormack, John; Burgess, Shane C; Edwards, Scott V; Lyons, Eric; Williams, Christina; Breen, Matthew; Howard, Jason T; Gresham, Cathy R; Peterson, Daniel G; Schmitz, Jürgen; Pollock, David D; Haussler, David; Triplett, Eric W; Zhang, Guojie; Irie, Naoki; Jarvis, Erich D; Brochu, Christopher A; Schmidt, Carl J; McCarthy, Fiona M; Faircloth, Brant C; Hoffmann, Federico G; Glenn, Travis C; Gabaldón, Toni; Paten, Benedict; Ray, David ATo provide context for the diversification of archosaurs--the group that includes crocodilians, dinosaurs, and birds--we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the comparatively rapid evolution is derived in birds. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs, thereby providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs.Item Open Access Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment.(Gigascience, 2014) Li, Cai; Zhang, Yong; Li, Jianwen; Kong, Lesheng; Hu, Haofu; Pan, Hailin; Xu, Luohao; Deng, Yuan; Li, Qiye; Jin, Lijun; Yu, Hao; Chen, Yan; Liu, Binghang; Yang, Linfeng; Liu, Shiping; Zhang, Yan; Lang, Yongshan; Xia, Jinquan; He, Weiming; Shi, Qiong; Subramanian, Sankar; Millar, Craig D; Meader, Stephen; Rands, Chris M; Fujita, Matthew K; Greenwold, Matthew J; Castoe, Todd A; Pollock, David D; Gu, Wanjun; Nam, Kiwoong; Ellegren, Hans; Ho, Simon Yw; Burt, David W; Ponting, Chris P; Jarvis, Erich D; Gilbert, M Thomas P; Yang, Huanming; Wang, Jian; Lambert, David M; Wang, Jun; Zhang, GuojieBACKGROUND: Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adélie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri]. RESULTS: Phylogenetic dating suggests that early penguins arose ~60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from ~1 million years ago to ~100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology. CONCLUSIONS: Our sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment.