Browsing by Author "Caves, Eleanor M"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Comparison of categorical color perception in two Estrildid finches(The American Naturalist) Caves, Eleanor M; Green, Patrick A; Zipple, Matthew N; Bharath, Dhanya; Peters, Susan; Johnsen, Sönke; Nowicki, StephenItem Open Access Hosts of avian brood parasites have evolved egg signatures with elevated information content.(Proc Biol Sci, 2015-07-07) Caves, Eleanor M; Stevens, Martin; Iversen, Edwin S; Spottiswoode, Claire NHosts of brood-parasitic birds must distinguish their own eggs from parasitic mimics, or pay the cost of mistakenly raising a foreign chick. Egg discrimination is easier when different host females of the same species each lay visually distinctive eggs (egg 'signatures'), which helps to foil mimicry by parasites. Here, we ask whether brood parasitism is associated with lower levels of correlation between different egg traits in hosts, making individual host signatures more distinctive and informative. We used entropy as an index of the potential information content encoded by nine aspects of colour, pattern and luminance of eggs of different species in two African bird families (Cisticolidae parasitized by cuckoo finches Anomalospiza imberbis, and Ploceidae by diederik cuckoos Chrysococcyx caprius). Parasitized species showed consistently higher entropy in egg traits than did related, unparasitized species. Decomposing entropy into two variation components revealed that this was mainly driven by parasitized species having lower levels of correlation between different egg traits, rather than higher overall levels of variation in each individual egg trait. This suggests that irrespective of the constraints that might operate on individual egg traits, hosts can further improve their defensive 'signatures' by arranging suites of egg traits into unpredictable combinations.Item Open Access Natural Experiment Demonstrates That Bird Loss Leads to Cessation of Dispersal of Native Seeds from Intact to Degraded Forests(PLoS ONE, 2013-05-31) Caves, Eleanor M; Jennings, Summer B; Hillerislambers, Janneke; Tewksbury, Joshua J; Rogers, Haldre SItem Open Access Spectral sensitivity, spatial resolution and temporal resolution and their implications for conspecific signalling in cleaner shrimp.(J Exp Biol, 2016-02) Caves, Eleanor M; Frank, Tamara M; Johnsen, SönkeCleaner shrimp (Decapoda) regularly interact with conspecifics and client reef fish, both of which appear colourful and finely patterned to human observers. However, whether cleaner shrimp can perceive the colour patterns of conspecifics and clients is unknown, because cleaner shrimp visual capabilities are unstudied. We quantified spectral sensitivity and temporal resolution using electroretinography (ERG), and spatial resolution using both morphological (inter-ommatidial angle) and behavioural (optomotor) methods in three cleaner shrimp species: Lysmata amboinensis, Ancylomenes pedersoni and Urocaridella antonbruunii. In all three species, we found strong evidence for only a single spectral sensitivity peak of (mean ± s.e.m.) 518 ± 5, 518 ± 2 and 533 ± 3 nm, respectively. Temporal resolution in dark-adapted eyes was 39 ± 1.3, 36 ± 0.6 and 34 ± 1.3 Hz. Spatial resolution was 9.9 ± 0.3, 8.3 ± 0.1 and 11 ± 0.5 deg, respectively, which is low compared with other compound eyes of similar size. Assuming monochromacy, we present approximations of cleaner shrimp perception of both conspecifics and clients, and show that cleaner shrimp visual capabilities are sufficient to detect the outlines of large stimuli, but not to detect the colour patterns of conspecifics or clients, even over short distances. Thus, conspecific viewers have probably not played a role in the evolution of cleaner shrimp appearance; rather, further studies should investigate whether cleaner shrimp colour patterns have evolved to be viewed by client reef fish, many of which possess tri- and tetra-chromatic colour vision and relatively high spatial acuity.Item Open Access Visual acuity in ray-finned fishes correlates with eye size and habitat.(J Exp Biol, 2017-05-01) Caves, Eleanor M; Sutton, Tracey T; Johnsen, SönkeVisual acuity (the ability to resolve spatial detail) is highly variable across fishes. However, little is known about the evolutionary pressures underlying this variation. We reviewed published literature to create an acuity database for 159 species of ray-finned fishes (Actinopterygii). Within a subset of those species for which we had phylogenetic information and anatomically measured acuity data (n=81), we examined relationships between acuity and both morphological (eye size and body size) and ecological (light level, water turbidity, habitat spatial complexity and diet) variables. Acuity was significantly correlated with eye size (P<0.001); a weaker correlation with body size occurred via a correlation between eye and body size (P<0.001). Acuity decreased as light level decreased and turbidity increased; however, these decreases resulted from fishes in dark or murky environments having smaller eyes and bodies than those in bright or clear environments. We also found significantly lower acuity in horizon-dominated habitats than in featureless or complex habitats. Higher acuity in featureless habitats is likely due to species having absolutely larger eyes and bodies in that environment, though eye size relative to body size is not significantly different from that in complex environments. Controlling for relative eye size, we found that species in complex environments have even higher acuity than predicted. We found no relationship between visual acuity and diet. Our results show that eye size is a primary factor underlying variation in fish acuity. We additionally show that habitat type is an important ecological factor that correlates with acuity in certain species.Item Open Access Von Uexküll Revisited: Addressing Human Biases in the Study of Animal Perception.(Integrative and comparative biology, 2019-12) Caves, Eleanor M; Nowicki, Stephen; Johnsen, SönkeMore than 100 years ago, the biologist Jakob von Uexküll suggested that, because sensory systems are diverse, animals likely inhabit different sensory worlds (umwelten) than we do. Since von Uexküll, work across sensory modalities has confirmed that animals sometimes perceive sensory information that humans cannot, and it is now well-established that one must account for this fact when studying an animal's behavior. We are less adept, however, at recognizing cases in which non-human animals may not detect or perceive stimuli the same way we do, which is our focus here. In particular, we discuss three ways in which our own perception can result in misinformed hypotheses about the function of various stimuli. In particular, we may (1) make untested assumptions about how sensory information is perceived, based on how we perceive or measure it, (2) attribute undue significance to stimuli that we perceive as complex or striking, and (3) assume that animals divide the sensory world in the same way that we as scientists do. We discuss each of these biases and provide examples of cases where animals cannot perceive or are not attending to stimuli in the same way that we do, and how this may lead us to mistaken assumptions. Because what an animal perceives affects its behavior, we argue that these biases are especially important for researchers in sensory ecology, cognition, and animal behavior and communication to consider. We suggest that studying animal umwelten requires integrative approaches that combine knowledge of sensory physiology with behavioral assays.