Browsing by Author "Chakraborty, Mukta"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Brain evolution by brain pathway duplication.(Philos Trans R Soc Lond B Biol Sci, 2015-12-19) Chakraborty, Mukta; Jarvis, Erich DUnderstanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel brain pathways and functions of the nervous system. Here, we review and further develop some insights to a new hypothesis on one mechanism that may contribute to nervous system evolution, in particular by brain pathway duplication. Like gene duplication, we propose that whole brain pathways can duplicate and the duplicated pathway diverge to take on new functions. We suggest that one mechanism of brain pathway duplication could be through gene duplication, although other mechanisms are possible. We focus on brain pathways for vocal learning and spoken language in song-learning birds and humans as example systems. This view presents a new framework for future research in our understanding of brain evolution and novel behavioural traits.Item Open Access Convergent differential regulation of SLIT-ROBO axon guidance genes in the brains of vocal learners.(J Comp Neurol, 2015-04-15) Wang, Rui; Chen, Chun-Chun; Hara, Erina; Rivas, Miriam V; Roulhac, Petra L; Howard, Jason T; Chakraborty, Mukta; Audet, Jean-Nicolas; Jarvis, Erich DOnly a few distantly related mammals and birds have the trait of complex vocal learning, which is the ability to imitate novel sounds. This ability is critical for speech acquisition and production in humans, and is attributed to specialized forebrain vocal control circuits that have several unique connections relative to adjacent brain circuits. As a result, it has been hypothesized that there could exist convergent changes in genes involved in neural connectivity of vocal learning circuits. In support of this hypothesis, expanding on our related study (Pfenning et al. [2014] Science 346: 1256846), here we show that the forebrain part of this circuit that makes a relatively rare direct connection to brainstem vocal motor neurons in independent lineages of vocal learning birds (songbird, parrot, and hummingbird) has specialized regulation of axon guidance genes from the SLIT-ROBO molecular pathway. The SLIT1 ligand was differentially downregulated in the motor song output nucleus that makes the direct projection, whereas its receptor ROBO1 was developmentally upregulated during critical periods for vocal learning. Vocal nonlearning bird species and male mice, which have much more limited vocal plasticity and associated circuits, did not show comparable specialized regulation of SLIT-ROBO genes in their nonvocal motor cortical regions. These findings are consistent with SLIT and ROBO gene dysfunctions associated with autism, dyslexia, and speech sound language disorders and suggest that convergent evolution of vocal learning was associated with convergent changes in the SLIT-ROBO axon guidance pathway.