Browsing by Author "Chang, Albert M"
Results Per Page
Sort Options
Item Open Access Electron Correlations and Spin in Asymmetric GaAs Quantum Point Contacts and Signatures of Structural Transitions in Hall Effect of FeSe(2010) Wu, Phillip M.The 1D Wigner crystal is a long sought after strongly correlated quantum state. Here we present electronic transport data of asymmetric quantum point contacts (QPC) tuned to the spin-incoherent regime, which provides evidence for achieving the 1D Wigner state. Our result can be distinguished in several particularly noticeable ways. First, we utilize an asymmetric point contact geometry that is simple to fabricate and has not been studied previously. We are able to tune to the conductance anomalies simply by asymmetrically applying voltages to the gates. Second, we observe clear suppression of the first plateau and direct jumps to the second in these asymmetric QPCs at liquid helium temperatures (4.2 K). Such conductance behavior is indicative of Wigner crystal row formation.
This thesis suggests that the novel geometry and gating scheme allows for a novel way to search for strongly correlated electronic behavior in quasi-1D quantum wires. A key finding is the importance of asymmetric QPCs for observation of anomalous transport characteristics. We have observed a strongly developed e2/h feature under asymmetric voltage gating and zero applied magnetic field. Such a feature is attributed to enhanced spin energies in the system. We believe the asymmetric design allows for a relaxing of the 1D confinement so that a quasi-1D electron conformation develops, which in turn allows for various possible magnetic states. In addition, by optimally tuning the confinement potential, we observe an unexpected suppression of the 2e2/h plateau. This provides further evidence for unusual electron arrangements in the asymmetric quantum point contact.
I also discuss transport studies on the new FeSe superconductor. Our collaboration discovered the superconducting β-FeSe compound with a Tc approximately 8 K. The crystal lattice structure of β-FeSe is by far the simplest of the Fe superconductors. One of the most interesting observations regarding FeSe is that the crystal structure undergoes a structural transition at approximately 105 K from tetragonal to orthorhombic (or triclinic) symmetry. We believe this structural transition to be closely related to the origin of superconductivity in this class of materials.
Transport studies also seem to support this claim. From Hall effect measurements of bulk FeSe, we find that FeSe is likely a two band (electron and hole) superconductor, which suggests it is quite different from the cuprates, and that very unconventional superconducting mechanisms are at play. The temperature dependence of the Hall coefficient is measured, and found to rapidly increase below 105 K. This suggests the scattering time related to hole bands dominate the transport at low temperature. As there is no magnetic ordering observed at low temperature, we do not expect the scattering from random Fe magnetic impurities to play a significant role in the enhanced hole scattering times. Thus, we speculate that this change is related to the structural transition observed.
Item Open Access Electronic and Spin Correlations in Asymmetric Quantum Point Contacts(2014) Zhang, HaoA quantum point contact (QPC) is a quasi-one dimensional electron system, for which the conductance is quantized in unit of $2e^2/h$. This conductance quantization can be explained in a simple single particle picture, where the electron density of states cancels the electron velocity to a constant. However, two significant features in QPCs were discovered in the past two decades, which have drawn much attention: the 0.7 effect in the linear conductance and zero-bias-anomaly (ZBA) in the differential conductance. Neither of them can be explained by single particle pictures.
In this thesis, I will present several electron correlation effects discovered in asymmetric QPCs, as shown below:
The linear conductance of our asymmetric QPCs shows conductance resonances. The number of these resonances increases as the QPC channel length increases. The quantized conductance plateau is also modulated by tuning the gate voltage of the QPCs. These two features, observed in the linear conductance, are ascribed to the formation of quasi-bound states in the QPCs, which is further ascribed to the electron-correlation-induced barriers.
The differential conductance for long channel QPCs shows the zero-bias-anomaly for every other linear conductance resonance valley, suggesting a near even-odd behavior. This even-odd law can be interpreted within the electron-correlation-induced barrier picture, where the quasi-localized non-zero spin in the quasi-bound state (Kondo-like) couples to the Fermi sea in the lead. For a specific case, triple-peak structure is observed in the differential conductance curves, while the electron filling number is still even, suggesting a spin triplet formation at zero magnetic field.
Small differential conductance oscillations as a function of bias voltage were discovered and systematically studied in an asymmetric QPC sample. These oscillations are significantly suppressed in a low in-plane magnetic field, which is completely unexpected. The oscillations are washed out when the temperature is increased to 0.8K. Numerical simulation, based on the thermal smearing of the Fermi distribution, was performed to simulate the oscillation behavior at high temperatures, using the low temperature data as an input. This simulation agrees with the oscillations off zero-bias region, but does not agree with the temperature evolution of the structure near zero-bias. Based on the above oscillation characteristics, all simple single particle pictures were carefully considered, and then ruled out. After exhausting all these pictures, we think these small oscillations are related to novel electronic and spin correlations.
Item Open Access Fluctuation Effects in One-Dimensional Superconducting Nanowires(2010) Li, PengThis thesis focuses on the fluctuation in the switching current $I_s$ of superconducting Al nanowires. We discovered that the maximum current which nanowires can support is limited by a single phase slip at low temperature.
Al superconducting nanowires less than 10 nm wide were fabricated based on a MBE grown InP ridge template in an edge-on geometry. The method utilizes a special substrate featuring a high standing 8nm-wide InP ridge. A thin layer of Al was evaporated on the substrate and Al on the ridge formed nanowires.
The fluctuation effects starts to dominate in the nanowire due to reduced energy barrier. One of such effects is the phase slip. The phase slip is a topological event, during which the superconducting phase between two superconducting electrodes changes by $2\pi$. The phase slip broadens the normal-superconducting transition. Part of the nanowire becomes normal during the phase slip and forms a normal core. The normal core generates heat and causes the premature switching in superconducting nanowires.
The nanowire becomes superconducting below the critical temperature $T_c$. The superconducting-normal transition was studied in the thesis. The transition of nanowires with superconducting leads qualitatively fits the thermally activated phase slip (TAPS) theory. On the other hand, the transition of the nanowires with normal leads showed a resistive tail due to the inverse-proximity effect.
The nanowire switches from the superconducting state to the normal state as the current is increased. Ideally, the maximum current is set by a pair-breaking mechanism, by which the kinetic energy of quasi-particles exceeds the bonding energy of Cooper pairs. This is called the critical current, $I_c$. In practice, the measured maximum current, called the switching current $I_s$, cannot reach $I_c$ because of the phase slip.
$I_s$ shows stochasticity due to the phase slip. For the nanowires with superconducting leads, the average $I_s$ approximately follows but falls below $I_c$. The fluctuation in $I_s$ shows non-monotonic behavior, in contrast to other studies. The fluctuation first increases and then decreases rapidly with increasing temperature. The fluctuation behavior is consistent with a scenario where the switch is triggered by a single phase slip at low temperature while by multiple phase slips at higher temperature. Thermal activation of phase slips appears dominant at most temperatures. However, in the thinnest nanowire, the saturation of the fluctuation at low temperature indicates that the phase slips by macroscopic quantum tunneling.
The superconducting nanowires with normal leads were also studied. One of the distinctive properties of our nanowire (the critical field of 1D nanowire is 10 times larger than that of a 2D superconducting film) allowed us to study the same nanowire with different leads (superconducting or normal). Both the average $I_s$ and the fluctuation in $I_s$ differed qualitatively depending on whether the leads were superconducting or normal. The temperature dependence of the average $I_s$ followed the $I_c$ of the Josephson junction instead of the phenomenological pair-breaking $I_c$. The difference was found to depend on both the temperature (close to $T_c$ or 0) and the length (shorter or longer than the charge imbalance length). Our study also showed that nonlinear current-voltage (IV) curves were observed due to the inverse-proximity effect.