Browsing by Author "Chen, YH"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Analysis of case-control association studies: SNPs, imputation and haplotypes(Statistical Science, 2009) Chatterjee, N; Chen, YH; Luo, S; Carroll, RJItem Open Access Analysis of click-evoked otoacoustic emissions by concentration of frequency and time: Preliminary results from normal hearing and Ménière's disease ears(AIP Conference Proceedings, 2018-05-31) Liu, TC; Wu, HT; Chen, YH; Chen, YH; Fang, TY; Wang, PC; Liu, YW© 2018 Author(s). The presence of click-evoked (CE) otoacoustic emissions (OAEs) has been clinically accepted as an indicator of normal cochlear processing of sounds. For treatment and diagnostic purposes, however, clinicians do not typically pay attention to the detailed spectrum and waveform of CEOAEs. A possible reason is due to the lack of noise-robust signal processing tools to estimate physiologically meaningful time-frequency properties of CEOAEs, such as the latency of spectral components. In this on-going study, we applied a modern tool called concentration of frequency and time (ConceFT, [1]) to analyze CEOAE waveforms. Randomly combined orthogonal functions are used as windowing functions for time-frequency analysis. The resulting spectrograms are subject to nonlinear time-frequency reassignment so as to enhance the concentration of time-varying sinusoidal components. The results after reassignment could be further averaged across the random choice of windows. CEOAE waveforms are acquired by a linear averaging paradigm, and longitudinal data are currently being collected from patients with Ménière's disease (MD) and a control group of normal hearing subjects. When CEOAE is present, the ConceFT plots show traces of decreasing but fluctuating instantaneous frequency against time. For comparison purposes, same processing methods are also applied to analyze CEOAE data from cochlear mechanics simulation.Item Open Access The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films.(Nanoscale, 2012-03-21) Bergin, SM; Rathmell, AR; Chen, YH; Charbonneau, P; Li, ZY; Wiley, BJThis article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells.