Browsing by Author "Chi, Jen-Tsan"
Now showing 1 - 17 of 17
Results Per Page
Sort Options
Item Open Access ACLY and ACC1 Regulate Hypoxia-Induced Apoptosis by Modulating ETV4 via α-ketoglutarate.(PLoS Genet, 2015-10) Keenan, Melissa M; Liu, Beiyu; Tang, Xiaohu; Wu, Jianli; Cyr, Derek; Stevens, Robert D; Ilkayeva, Olga; Huang, Zhiqing; Tollini, Laura A; Murphy, Susan K; Lucas, Joseph; Muoio, Deborah M; Kim, So Young; Chi, Jen-TsanIn order to propagate a solid tumor, cancer cells must adapt to and survive under various tumor microenvironment (TME) stresses, such as hypoxia or lactic acidosis. To systematically identify genes that modulate cancer cell survival under stresses, we performed genome-wide shRNA screens under hypoxia or lactic acidosis. We discovered that genetic depletion of acetyl-CoA carboxylase (ACACA or ACC1) or ATP citrate lyase (ACLY) protected cancer cells from hypoxia-induced apoptosis. Additionally, the loss of ACLY or ACC1 reduced levels and activities of the oncogenic transcription factor ETV4. Silencing ETV4 also protected cells from hypoxia-induced apoptosis and led to remarkably similar transcriptional responses as with silenced ACLY or ACC1, including an anti-apoptotic program. Metabolomic analysis found that while α-ketoglutarate levels decrease under hypoxia in control cells, α-ketoglutarate is paradoxically increased under hypoxia when ACC1 or ACLY are depleted. Supplementation with α-ketoglutarate rescued the hypoxia-induced apoptosis and recapitulated the decreased expression and activity of ETV4, likely via an epigenetic mechanism. Therefore, ACC1 and ACLY regulate the levels of ETV4 under hypoxia via increased α-ketoglutarate. These results reveal that the ACC1/ACLY-α-ketoglutarate-ETV4 axis is a novel means by which metabolic states regulate transcriptional output for life vs. death decisions under hypoxia. Since many lipogenic inhibitors are under investigation as cancer therapeutics, our findings suggest that the use of these inhibitors will need to be carefully considered with respect to oncogenic drivers, tumor hypoxia, progression and dormancy. More broadly, our screen provides a framework for studying additional tumor cell stress-adaption mechanisms in the future.Item Open Access Application of bioluminescence resonance energy transfer-based cell tracking approach in bone tissue engineering.(Journal of tissue engineering, 2021-01) Wang, Lufei; Lee, Dong Joon; Han, Han; Zhao, Lixing; Tsukamoto, Hiroshi; Kim, Yong-Il; Musicant, Adele M; Parag-Sharma, Kshitij; Hu, Xiangxiang; Tseng, Henry C; Chi, Jen-Tsan; Wang, Zhengyan; Amelio, Antonio L; Ko, Ching-ChangBioluminescent imaging (BLI) has emerged as a popular in vivo tracking modality in bone regeneration studies stemming from its clear advantages: non-invasive, real-time, and inexpensive. We recently adopted bioluminescence resonance energy transfer (BRET) principle to improve BLI cell tracking and generated the brightest bioluminescent signal known to date, which thus enables more sensitive real-time cell tracking at deep tissue level. In the present study, we brought BRET-based cell tracking strategy into the field of bone tissue engineering for the first time. We labeled rat mesenchymal stem cells (rMSCs) with our in-house BRET-based GpNLuc reporter and evaluated the cell tracking efficacy both in vitro and in vivo. In scaffold-free spheroid 3D culture system, using BRET-based GpNLuc labeling resulted in significantly better correlation to cell numbers than a fluorescence based approach. In scaffold-based 3D culture system, GpNLuc-rMSCs displayed robust bioluminescence signals with minimal background noise. Furthermore, a tight correlation between BLI signal and cell number highlighted the robust reliability of using BRET-based BLI. In calvarial critical sized defect model, robust signal and the consistency in cell survival evaluation collectively supported BRET-based GpNLuc labeling as a reliable approach for non-invasively tracking MSC. In summary, BRET-based GpNLuc labeling is a robust, reliable, and inexpensive real-time cell tracking method, which offers a promising direction for the technological innovation of BLI and even non-invasive tracking systems, in the field of bone tissue engineering.Item Open Access Associations between Intake of Folate, Methionine, and Vitamins B-12, B-6 and Prostate Cancer Risk in American Veterans.(J Cancer Epidemiol, 2012) Vidal, Adriana C; Grant, Delores J; Williams, Christina D; Masko, Elizabeth; Allott, Emma H; Shuler, Kathryn; McPhail, Megan; Gaines, Alexis; Calloway, Elizabeth; Gerber, Leah; Chi, Jen-Tsan; Freedland, Stephen J; Freedland, Stephen J; Hoyo, CathrineProstate cancer (PC) is the second leading cause of cancer death in men. Recent reports suggest that excess of nutrients involved in the one-carbon metabolism pathway increases PC risk; however, empirical data are lacking. Veteran American men (272 controls and 144 PC cases) who attended the Durham Veteran American Medical Center between 2004-2009 were enrolled into a case-control study. Intake of folate, vitamin B12, B6, and methionine were measured using a food frequency questionnaire. Regression models were used to evaluate the association among one-carbon cycle nutrients, MTHFR genetic variants, and prostate cancer. Higher dietary methionine intake was associated with PC risk (OR = 2.1; 95%CI 1.1-3.9) The risk was most pronounced in men with Gleason sum <7 (OR = 2.75; 95%CI 1.32- 5.73). The association of higher methionine intake and PC risk was only apparent in men who carried at least one MTHFR A1298C allele (OR = 6.7; 95%CI = 1.6-27.8), compared to MTHFR A1298A noncarrier men (OR = 0.9; 95%CI = 0.24-3.92) (p-interaction = 0.045). There was no evidence for associations between B vitamins (folate, B12, and B6) and PC risk. Our results suggest that carrying the MTHFR A1298C variants modifies the association between high methionine intake and PC risk. Larger studies are required to validate these findings.Item Open Access CoA synthase regulates mitotic fidelity via CBP-mediated acetylation.(Nature communications, 2018-03-12) Lin, Chao-Chieh; Kitagawa, Mayumi; Tang, Xiaohu; Hou, Ming-Hsin; Wu, Jianli; Qu, Dan Chen; Srinivas, Vinayaka; Liu, Xiaojing; Thompson, J Will; Mathey-Prevot, Bernard; Yao, Tso-Pang; Lee, Sang Hyun; Chi, Jen-TsanThe temporal activation of kinases and timely ubiquitin-mediated degradation is central to faithful mitosis. Here we present evidence that acetylation controlled by Coenzyme A synthase (COASY) and acetyltransferase CBP constitutes a novel mechanism that ensures faithful mitosis. We found that COASY knockdown triggers prolonged mitosis and multinucleation. Acetylome analysis reveals that COASY inactivation leads to hyper-acetylation of proteins associated with mitosis, including CBP and an Aurora A kinase activator, TPX2. During early mitosis, a transient CBP-mediated TPX2 acetylation is associated with TPX2 accumulation and Aurora A activation. The recruitment of COASY inhibits CBP-mediated TPX2 acetylation, promoting TPX2 degradation for mitotic exit. Consistently, we detected a stage-specific COASY-CBP-TPX2 association during mitosis. Remarkably, pharmacological and genetic inactivation of CBP effectively rescued the mitotic defects caused by COASY knockdown. Together, our findings uncover a novel mitotic regulation wherein COASY and CBP coordinate an acetylation network to enforce productive mitosis.Item Open Access DDR2 upregulation confers ferroptosis susceptibility of recurrent breast tumors through the Hippo pathway(Oncogene) Lin, Chao-Chieh; Yang, Wen-Hsuan; Lin, Yi-Tzu; Tang, Xiaohu; Chen, Po-Han; Ding, Chien-Kuang Cornelia; Qu, Dan Chen; Alvarez, James V; Chi, Jen-TsanItem Open Access Functional crosstalk among oxidative stress and O-GlcNAc signaling pathways.(Glycobiology, 2018-08) Chen, Po-Han; Chi, Jen-Tsan; Boyce, MichaelIn metazoans, thousands of intracellular proteins are modified with O-linked β-N-acetylglucosamine (O-GlcNAc) in response to a wide range of stimuli and stresses. In particular, a complex and evolutionarily conserved interplay between O-GlcNAcylation and oxidative stress has emerged in recent years. Here, we review the current literature on the connections between O-GlcNAc and oxidative stress, with a particular emphasis on major signaling pathways, such as KEAP1/NRF2, FOXO, NFκB, p53 and cell metabolism. Taken together, this work sheds important light on the signaling functions of protein glycosylation and the mechanisms of stress responses alike and illuminates how the two are integrated in animal cell physiology.Item Open Access Glycosylation of gigaxonin regulates intermediate filaments: Novel molecular insights into giant axonal neuropathy: supplemental information(2019-01-26) CHEN, PO-HAN; Smith, Timothy; Hu, Jimin; Pan, Samuel; Smith, Alexander; Lu, Annie; Chi, Jen-Tsan; Boyce, MichaelGigaxonin (also known as KLHL16) is an E3 ligase adaptor protein that promotes the ubiquitination and degradation of intermediate filament (IF) proteins. Mutations in human gigaxonin cause the fatal neurodegenerative disease giant axonal neuropathy (GAN), in which IF proteins accumulate and aggregate in axons throughout the nervous system, impairing neuronal function and viability. Despite this pathophysiological significance, the upstream regulation and downstream effects of normal and aberrant gigaxonin function remain incompletely understood. Here, we report that gigaxonin is modified by O-linked-beta-N-acetylglucosamine (O-GlcNAc), a prevalent form of intracellular glycosylation, in a nutrient- and growth factor-dependent manner. Mass spectrometry analyses of human gigaxonin revealed nine candidate sites of O-GlcNAcylation, two of which - serine 272 and threonine 277 - are required for its ability to mediate IF turnover in novel gigaxonin-deficient human cell models that we created. Taken together, these results suggest that nutrient-responsive gigaxonin O-GlcNAcylation forms a regulatory link between metabolism and IF proteostasis. Our work may have significant implications for understanding the non-genetic modifiers of GAN phenotypes and for the optimization of gene therapy for this disease.Item Open Access Glycosylation of KEAP1 links nutrient sensing to redox stress signaling.(The EMBO journal, 2017-08) Chen, Po-Han; Smith, Timothy J; Wu, Jianli; Siesser, Priscila F; Bisnett, Brittany J; Khan, Farhan; Hogue, Maxwell; Soderblom, Erik; Tang, Flora; Marks, Jeffrey R; Major, Michael B; Swarts, Benjamin M; Boyce, Michael; Chi, Jen-TsanO-GlcNAcylation is an essential, nutrient-sensitive post-translational modification, but its biochemical and phenotypic effects remain incompletely understood. To address this question, we investigated the global transcriptional response to perturbations in O-GlcNAcylation. Unexpectedly, many transcriptional effects of O-GlcNAc transferase (OGT) inhibition were due to the activation of NRF2, the master regulator of redox stress tolerance. Moreover, we found that a signature of low OGT activity strongly correlates with NRF2 activation in multiple tumor expression datasets. Guided by this information, we identified KEAP1 (also known as KLHL19), the primary negative regulator of NRF2, as a direct substrate of OGT We show that O-GlcNAcylation of KEAP1 at serine 104 is required for the efficient ubiquitination and degradation of NRF2. Interestingly, O-GlcNAc levels and NRF2 activation co-vary in response to glucose fluctuations, indicating that KEAP1 O-GlcNAcylation links nutrient sensing to downstream stress resistance. Our results reveal a novel regulatory connection between nutrient-sensitive glycosylation and NRF2 signaling and provide a blueprint for future approaches to discover functionally important O-GlcNAcylation events on other KLHL family proteins in various experimental and disease contexts.Item Open Access KEAP1 has a sweet spot: A new connection between intracellular glycosylation and redox stress signaling in cancer cells.(Molecular & cellular oncology, 2017-01) Chen, Po-Han; Chi, Jen-Tsan; Boyce, MichaelThe KEAP1/NRF2 pathway is a master regulator of the redox stress response and is dysregulated in numerous human tumors. We discovered that NRF2 signaling is controlled by the site-specific glycosylation of KEAP1, revealing a potentially broad link among nutrient sensing, proteostasis and stress resistance in both normal and cancer cells.Item Open Access Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism.(Cell death and differentiation, 2019-07-18) Chen, Po-Han; Wu, Jianli; Ding, Chien-Kuang Cornelia; Lin, Chao-Chieh; Pan, Samuel; Bossa, Nathan; Xu, Yitong; Yang, Wen-Hsuan; Mathey-Prevot, Bernard; Chi, Jen-TsanFerroptosis is a specialized iron-dependent cell death that is associated with lethal lipid peroxidation. Modulation of ferroptosis may have therapeutic potential since it has been implicated in various human diseases as well as potential antitumor activities. However, much remains unknown about the underlying mechanisms and genetic determinants of ferroptosis. Given the critical role of kinases in most biological processes and the availability of various kinase inhibitors, we sought to systemically identify kinases essential for ferroptosis. We performed a forward genetic-based kinome screen against ferroptosis in MDA-MB-231 cells triggered by cystine deprivation. This screen identified 34 essential kinases involved in TNFα and NF-kB signaling. Unexpectedly, the DNA damage response serine/threonine kinase ATM (mutated in Ataxia-Telangiectasia) was found to be essential for ferroptosis. The pharmacological or genetic inhibition of ATM consistently rescued multiple cancer cells from ferroptosis triggered by cystine deprivation or erastin. Instead of the canonical DNA damage pathways, ATM inhibition rescued ferroptosis by increasing the expression of iron regulators involved in iron storage (ferritin heavy and light chain, FTH1 and FTL) and export (ferroportin, FPN1). The coordinated changes of these iron regulators during ATM inhibition resulted in a lowering of labile iron and prevented the iron-dependent ferroptosis. Furthermore, we found that ATM inhibition enhanced the nuclear translocation of metal-regulatory transcription factor 1 (MTF1), responsible for regulating expression of Ferritin/FPN1 and ferroptosis protection. Genetic depletion of MTF-1 abolished the regulation of iron-regulatory elements by ATM and resensitized the cells to ferroptosis. Together, we have identified an unexpected ATM-MTF1-Ferritin/FPN1 regulatory axis as novel determinants of ferroptosis through regulating labile iron levels.Item Open Access Latent transcriptional variations of individual Plasmodium falciparum uncovered by single-cell RNA-seq and fluorescence imaging.(PLoS genetics, 2019-12-19) Walzer, Katelyn A; Fradin, Hélène; Emerson, Liane Y; Corcoran, David L; Chi, Jen-TsanMalaria parasites follow a complex life cycle that consists of multiple stages that span from the human host to the mosquito vector. Among the species causing malaria, Plasmodium falciparum is the most lethal, with clinical symptoms manifesting during the intraerythrocytic developmental cycle (IDC). During the IDC, P. falciparum progresses through a synchronous and continuous cascade of transcriptional programming previously established using population analyses. While individual parasites are known to exhibit transcriptional variations to evade the host immune system or commit to a sexual fate, such rare expression heterogeneity is largely undetectable on a population level. Therefore, we combined single-cell RNA-sequencing (scRNA-seq) on a microfluidic platform and fluorescence imaging to delineate the transcriptional variations among individual parasites during late asexual and sexual stages. The comparison between asexual and sexual parasites uncovered a set of previously undefined sex-specific genes. Asexual parasites were segregated into three distinct clusters based on the differential expression of genes encoding SERAs, rhoptry proteins, and EXP2 plus transporters. Multiple pseudotime analyses revealed that these stage-specific transitions are distinct. RNA fluorescent in situ hybridization of cluster-specific genes validated distinct stage-specific expression and transitions during the IDC and defined the highly variable transcriptional pattern of EXP2. Additionally, these analyses indicated huge variations in the stage-specific transcript levels among parasites. Overall, scRNA-seq and RNA-FISH of P. falciparum revealed distinct stage transitions and unexpected degrees of heterogeneity with potential impact on transcriptional regulation during the IDC and adaptive responses to the host.Item Open Access MESH1 is a cytosolic NADPH phosphatase that regulates ferroptosis(Nature Metabolism, 2020-01-01) Ding, Chien-Kuang Cornelia; Rose, Joshua; Sun, Tianai; Wu, Jianli; Chen, Po-Han; Lin, Chao-Chieh; Yang, Wen-Hsuan; Chen, Kai-Yuan; Lee, Hana; Xu, Emily; Tian, Sarah; Akinwuntan, Jadesola; Zhao, Jinshi; Guan, Ziqiang; Zhou, Pei; Chi, Jen-Tsan© 2020, The Author(s), under exclusive licence to Springer Nature Limited. Critical to the bacterial stringent response is the rapid relocation of resources from proliferation toward stress survival through the respective accumulation and degradation of (p)ppGpp by RelA and SpoT homologues. While mammalian genomes encode MESH1, a homologue of the bacterial (p)ppGpp hydrolase SpoT, neither (p)ppGpp nor its synthetase has been identified in mammalian cells. Here, we show that human MESH1 is an efficient cytosolic NADPH phosphatase that facilitates ferroptosis. Visualization of the MESH1–NADPH crystal structure revealed a bona fide affinity for the NADPH substrate. Ferroptosis-inducing erastin or cystine deprivation elevates MESH1, whose overexpression depletes NADPH and sensitizes cells to ferroptosis, whereas MESH1 depletion promotes ferroptosis survival by sustaining the levels of NADPH and GSH and by reducing lipid peroxidation. The ferroptotic protection by MESH1 depletion is ablated by suppression of the cytosolic NAD(H) kinase, NADK, but not its mitochondrial counterpart NADK2. Collectively, these data shed light on the importance of cytosolic NADPH levels and their regulation under ferroptosis-inducing conditions in mammalian cells.Item Open Access Serum metabolomic analysis of men on a low-carbohydrate diet for biochemically recurrent prostate cancer reveals the potential role of ketogenesis to slow tumor growth: a secondary analysis of the CAPS2 diet trial(Prostate Cancer and Prostatic Diseases) Chi, Jen-Tsan; Lin, Pao-Hwa; Tolstikov, Vladimir; Howard, Lauren; Chen, Emily Y; Bussberg, Valerie; Greenwood, Bennett; Narain, Niven R; Kiebish, Michael A; Freedland, Stephen JItem Restricted The genomic analysis of erythrocyte microRNA expression in sickle cell diseases.(PLoS One, 2008-06-04) Chen, Shao-Yin; Wang, Yulei; Telen, Marilyn J; Chi, Jen-TsanBACKGROUND: Since mature erythrocytes are terminally differentiated cells without nuclei and organelles, it is commonly thought that they do not contain nucleic acids. In this study, we have re-examined this issue by analyzing the transcriptome of a purified population of human mature erythrocytes from individuals with normal hemoglobin (HbAA) and homozygous sickle cell disease (HbSS). METHODS AND FINDINGS: Using a combination of microarray analysis, real-time RT-PCR and Northern blots, we found that mature erythrocytes, while lacking ribosomal and large-sized RNAs, contain abundant and diverse microRNAs. MicroRNA expression of erythrocytes was different from that of reticulocytes and leukocytes, and contributed the majority of the microRNA expression in whole blood. When we used microRNA microarrays to analyze erythrocytes from HbAA and HbSS individuals, we noted a dramatic difference in their microRNA expression pattern. We found that miR-320 played an important role for the down-regulation of its target gene, CD71 during reticulocyte terminal differentiation. Further investigation revealed that poor expression of miR-320 in HbSS cells was associated with their defective downregulation CD71 during terminal differentiation. CONCLUSIONS: In summary, we have discovered significant microRNA expression in human mature erythrocytes, which is dramatically altered in HbSS erythrocytes and their defect in terminal differentiation. Thus, the global analysis of microRNA expression in circulating erythrocytes can provide mechanistic insights into the disease phenotypes of erythrocyte diseases.Item Open Access The Hippo Pathway Effector YAP Promotes Ferroptosis via the E3 Ligase SKP2(Molecular Cancer Research) Yang, Wen-Hsuan; Lin, Chao-Chieh; Wu, Jianli; Chao, Pei-Ya; Chen, Kuan; Chen, Po-Han; Chi, Jen-TsanItem Open Access The Intersection of DNA Damage Response and Ferroptosis-A Rationale for Combination Therapeutics.(Biology, 2020-07-23) Chen, Po-Han; Tseng, Watson Hua-Sheng; Chi, Jen-TsanFerroptosis is a novel form of iron-dependent cell death characterized by lipid peroxidation. While the importance and disease relevance of ferroptosis are gaining recognition, much remains unknown about its interaction with other biological processes and pathways. Recently, several studies have identified intricate and complicated interplay between ferroptosis, ionizing radiation (IR), ATM (ataxia-telangiectasia mutated)/ATR (ATM and Rad3-related), and tumor suppressor p53, which signifies the participation of the DNA damage response (DDR) in iron-related cell death. DDR is an evolutionarily conserved response triggered by various DNA insults to attenuate proliferation, enable DNA repairs, and dispose of cells with damaged DNA to maintain genome integrity. Deficiency in proper DDR in many genetic disorders or tumors also highlights the importance of this pathway. In this review, we will focus on the biological crosstalk between DDR and ferroptosis, which is mediated mostly via noncanonical mechanisms. For clinical applications, we also discuss the potential of combining ionizing radiation and ferroptosis-inducers for synergistic effects. At last, various ATM/ATR inhibitors under clinical development may protect ferroptosis and treat many ferroptosis-related diseases to prevent cell death, delay disease progression, and improve clinical outcomes.Item Open Access Zinc transporter ZIP7 is a novel determinant of ferroptosis(Cell Death & Disease, 2021-02) Chen, Po-Han; Wu, Jianli; Xu, Yitong; Ding, Chien-Kuang Cornelia; Mestre, Alexander A; Lin, Chao-Chieh; Yang, Wen-Hsuan; Chi, Jen-TsanAbstractFerroptosis is a newly described form of regulated cell death triggered by oxidative stresses and characterized by extensive lipid peroxidation and membrane damages. The name of ferroptosis indicates that the ferroptotic death process depends on iron, but not other metals, as one of its canonical features. Here, we reported that zinc is also essential for ferroptosis in breast and renal cancer cells. Zinc chelator suppressed ferroptosis, and zinc addition promoted ferroptosis, even during iron chelation. By interrogating zinc-related genes in a genome-wide RNAi screen of ferroptosis, we identified SLC39A7, encoding ZIP7 that controls zinc transport from endoplasmic reticulum (ER) to cytosol, as a novel genetic determinant of ferroptosis. Genetic and chemical inhibition of the ZIP7 protected cells against ferroptosis, and the ferroptosis protection upon ZIP7 knockdown can be abolished by zinc supplementation. We found that the genetic and chemical inhibition of ZIP7 triggered ER stresses, including the induction of the expression of HERPUD1 and ATF3. Importantly, the knockdown of HERPUD1 abolished the ferroptosis protection phenotypes of ZIP7 inhibition. Together, we have uncovered an unexpected role of ZIP7 in ferroptosis by maintaining ER homeostasis. These findings may have therapeutic implications for human diseases involving ferroptosis and zinc dysregulations.