Browsing by Author "Chikaraishi, Dona"
Results Per Page
Sort Options
Item Open Access A novel, non-apoptotic role for Scythe/BAT3: a functional switch between the pro- and anti-proliferative roles of p21 during the cell cycle.(2012) Yong, Sheila T.Scythe/BAT3 is a member of the BAG protein family whose role in apoptosis, a form of programmed cell death, has been extensively studied. However, since the developmental defects observed in Bat3‐null mouse embryos cannot be explained solely by defects in apoptosis, I investigated whether BAT3 is also involved in regulating cell‐cycle progression. Using a stable‐inducible Bat3‐knockdown cellular system, I demonstrated that reduced BAT3 protein level causes a delay in both the G1/S transition and G2/M progression. Concurrent with these changes in cell‐cycle progression, I observed a reduction in the turnover and phosphorylation of the CDK inhibitor p21. p21 is best known as an inhibitor of DNA replication; however, phosphorylated p21 has also been shown to promote G2/M progression. Additionally, I observed that the p21 turnover rate was also reduced in Bat3‐knockdown cells released from G2/M synchronization. My findings indicate that in Bat3‐knockdown cells, p21 continues to be synthesized during cell‐cycle phases that do not normally require p21, resulting in p21 protein accumulation and a subsequent cell‐cycle delay. Finally, I showed that BAT3 co‐localizes with p21 during the cell cycle and is required for the translocation of p21 from the cytoplasm to the nucleus during the G1/S transition and G2/M progression. My study reveals a novel, non‐apoptoticrole for BAT3 in cell‐cycle regulation. By maintaining low p21 protein level during G1/S transition, BAT3 counteracts the inhibitory effect of p21 on DNA replication and thus enables the cells to progress from G1 into S phase. Conversely, during G2/M progression, BAT3 facilitates p21 phosphorylation, an event that promotes G2/M progression. BAT3 modulates these pro‐ and anti‐proliferative roles of p21 at least in part by regulating the translocation of p21 between the cytoplasm and nucleus of the cells to ensure proper functioning and regulation of p21 in the appropriate intracellular compartments during different cell‐cycle phases.Item Open Access Amyloid Precursor Protein-Dependent and -Independent Mechanisms in Hypoxia-Induced Axonopathy(2012) Christianson, Melissa GottronHypoxia is a profound stressor of the central nervous system implicated in numerous neurodegenerative diseases. While it is increasingly evident that the early effects of hypoxia cause impairment at the level of the axon, the precise mechanisms through which hypoxia compromises axonal structure and function remain unclear. However, links between hypoxia-induced axonopathic disease and the amyloid cascade, as well as the upregulation of amyloid precursor protein (APP) and amyloid beta (Aβ) by hypoxic stress, give rise to the hypothesis that proteolytic cleavage of APP into Aβ may be specifically responsible for axonopathy under conditions of hypoxia.
The goal of this dissertation was thus to understand dependence of hypoxia-induced axonal morphological and functional impairment on APP cleavage and the production of Aβ. I have developed a model of hypoxia-induced axonopathy in retinal explants. Using this model, I have experimentally addressed the core hypothesis that APP cleavage, and in particular the formation of Aβ, is necessary and sufficient to mediate morphological and functional axonopathy caused by hypoxia. I have found that there is a dissociation between the mechanisms responsible for hypoxia-induced morphological and functional impairment of the axon in the explanted retina, with the former being dependent on APP-to-Aβ processing and the latter likely being dependent on cleavage of a non-APP substrate by the enzyme BACE1. These findings shed light on mechanisms of hypoxia-induced axonopathy.
Item Open Access Mechanisms of specificity in neuronal activity-regulated gene transcription.(2012) Lyons, Michelle RenéeIn the nervous system, activity-regulated gene transcription is one of the fundamental processes responsible for orchestrating proper brain development–a process that in humans takes over 20 years. Moreover, activity-dependent regulation of gene expression continues to be important for normal brain function throughout life; for example, some forms of synaptic plasticity important for learning and memory are known to rely on alterations in gene transcription elicited by sensory input. In the last two decades, increasingly comprehensive studies have described complex patterns of gene transcription induced and/or repressed following different kinds of stimuli that act in concert to effect changes in neuronal and synaptic physiology. A key theme to emerge from these studies is that of specificity, meaning that different kinds of stimuli up- and down regulate distinct sets of genes. The importance of such signaling specificity in synapse-to-nucleus communication becomes readily apparent in studies examining the physiological effects of the loss of one or more forms of transcriptional specificity – often, such genetic manipulations result in aberrant synapse formation, neuronal cell death, and/or cognitive impairment in mutant mice. The two primary loci at which mechanisms of signaling specificity typically act are 1) at the synapse – in the form of calcium channel number, localization, and subunit composition – and 2) in the nucleus – in the form of transcription factor expression, localization, and post-translational modification. My dissertation research has focused on the mechanisms of specificity that govern the activity-regulated transcription of the gene encoding Brain-derived Neurotrophic Factor(Bdnf). BDNF is a secreted protein that has numerous important functions in nervous system development and plasticity, including neuronal survival, neurite outgrowth, synapse formation, and long-term potentiation. Due to Bdnf’s complex transcriptional regulation by various forms of neural stimuli, it is well positioned to function as a transducer through which altered neural activity states can lead to changes in neuronal physiology and synaptic function. In this dissertation, I show that different families of transcription factors, and even different isoforms or splice variants within a single family, can specifically regulate Bdnf transcription in an age- and stimulus-dependent manner. Additionally, I characterize another mechanism of synapse-to-nucleus signaling specificity that is dependent upon NMDA-type glutamate receptor subunit composition, and provide evidence that the effect this signaling pathway has on gene transcription is important for normal GABAergic synapse formation. Taken together, my dissertation research sheds light on several novel signaling mechanisms that could lend specificity to the activity-dependent transcription of Bdnf exon IV. My data indicate that distinct neuronal stimuli can differentially regulate the Calcium-Response Element CaRE1 within Bdnf promoter IV through activation of two distinct transcription factors: Calcium-Response Factor (CaRF) and Myocyte Enhancer Factor 2 (MEF2). Furthermore, individual members of the MEF2 family of transcription factors differentially regulate the expression of Bdnf, and different MEF2C splice variants are unequally responsive to L-type voltage-gated calcium channel activation. Additionally, I show here for the first time that the NMDA-type glutamate receptor subunit NR3A (also known as GluN3A) is capable of exerting an effect on NMDA receptor-dependent Bdnf exon IV transcription, and that changes in the expression levels of NR3A may function to regulate the threshold for activation of synaptic plasticity-inducing transcriptional programs during brain development. Finally, I provide evidence that the transcription factor CaRF might function in the regulation of homeostatic programs of gene transcription in an age- and stimulus-specific manner. Together, these data describe multiple novel mechanisms of specificity in neuronal activity-regulated gene transcription, some of which function at the synapse, others of which function in the nucleus.