Browsing by Author "Choudhury, KR"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Differential response to exercise in claudin-low breast cancer(Oncotarget, 2017-01-01) Glass, OK; Bowie, M; Fuller, J; Darr, D; sary, JU; Boss, K; Choudhury, KR; Liu, X; Zhang, Z; Locasale, JW; Williams, C; Dewhirst, MW; Jones, LW; Seewaldt, V© Glass et al. Exposure to exercise following a breast cancer diagnosis is associated with reductions in the risk of recurrence. However, it is not known whether breast cancers within the same molecular-intrinsic subtype respond differently to exercise. Syngeneic mouse models of claudin-low breast cancer (i.e., EO771, 4TO7, and C3(1)SV40Tagp16- luc) were allocated to a uniform endurance exercise treatment dose (forced treadmill exercise) or sham-exercise (stationary treadmill). Compared to shamcontrols, endurance exercise treatment differentially affected tumor growth rate: 1- slowed (EO771), 2- accelerated (C3(1)SV40Tag-p16-luc), or 3- was not affected (4TO7). Differential sensitivity of the three tumor lines to exercise was paralleled by effects on intratumoral Ki-67, Hif1-a, and metabolic programming. Inhibition of Hif1-α synthesis by the cardiac glycoside, digoxin, completely abrogated exerciseaccelerated tumor growth in C3(1)SV40Tag-p16-luc. These results suggest that intratumoral Hif1-α expression is an important determinant of claudin-low breast cancer adaptation to exercise treatment.Item Open Access White Matter Changes Related to Subconcussive Impact Frequency during a Single Season of High School Football.(AJNR Am J Neuroradiol, 2017-12-21) Kuzminski, SJ; Clark, MD; Fraser, MA; Haswell, CC; Morey, RA; Liu, C; Choudhury, KR; Guskiewicz, KM; Petrella, JRBACKGROUND AND PURPOSE: The effect of exposing the developing brain of a high school football player to subconcussive impacts during a single season is unknown. The purpose of this pilot study was to use diffusion tensor imaging to assess white matter changes during a single high school football season, and to correlate these changes with impacts measured by helmet accelerometer data and neurocognitive test scores collected during the same period. MATERIALS AND METHODS: Seventeen male athletes (mean age, 16 ± 0.73 years) underwent MR imaging before and after the season. Changes in fractional anisotropy across the white matter skeleton were assessed with Tract-Based Spatial Statistics and ROI analysis. RESULTS: The mean number of impacts over a 10-g threshold sustained was 414 ± 291. Voxelwise analysis failed to show significant changes in fractional anisotropy across the season or a correlation with impact frequency, after correcting for multiple comparisons. ROI analysis showed significant (P < .05, corrected) decreases in fractional anisotropy in the fornix-stria terminalis and cingulum hippocampus, which were related to impact frequency. The effects were strongest in the fornix-stria terminalis, where decreases in fractional anisotropy correlated with worsening visual memory. CONCLUSIONS: Our findings suggest that subclinical neurotrauma related to participation in American football may result in white matter injury and that alterations in white matter tracts within the limbic system may be detectable after only 1 season of play at the high school level.