Browsing by Author "Cohen, MJ"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Denitrification and inference of nitrogen sources in the karstic Floridan Aquifer(Biogeosciences, 2012-05-22) Heffernan, JB; Albertin, AR; Fork, ML; Katz, BG; Cohen, MJAquifer denitrification is among the most poorly constrained fluxes in global and regional nitrogen budgets. The few direct measurements of denitrification in groundwaters provide limited information about its spatial and temporal variability, particularly at the scale of whole aquifers. Uncertainty in estimates of denitrification may also lead to underestimates of its effect on isotopic signatures of inorganic N, and thereby confound the inference of N source from these data. In this study, our objectives are to quantify the magnitude and variability of denitrification in the Upper Floridan Aquifer (UFA) and evaluate its effect on N isotopic signatures at the regional scale. Using dual noble gas tracers (Ne, Ar) to generate physical predictions of N2 gas concentrations for 112 observations from 61 UFA springs, we show that excess (i.e. denitrification-derived) N2 is highly variable in space and inversely correlated with dissolved oxygen (O2). Negative relationships between O2 and δ15N NO3 across a larger dataset of 113 springs, well-constrained isotopic fractionation coefficients, and strong 15N:18O covariation further support inferences of denitrification in this uniquely organic-matter-poor system. Despite relatively low average rates, denitrification accounted for 32 % of estimated aquifer N inputs across all sampled UFA springs. Back-calculations of source δ15N NO3 based on denitrification progression suggest that isotopically-enriched nitrate (NO3-) in many springs of the UFA reflects groundwater denitrification rather than urban- or animal-derived inputs. © Author(s) 2012.Item Open Access Direct and indirect coupling of primary production and diel nitrate dynamics in a subtropical spring-fed river(Limnology and Oceanography, 2010-03-01) Heffernan, JB; Cohen, MJWe used high-frequency in situ measurements of nitrate (NO3-) and dissolved oxygen (DO) from the springfed Ichetucknee River, Florida, to derive multiple independent estimates of assimilatory nitrogen (N) demand, and to evaluate the short-term dependence of heterotrophic assimilation and dissimilation (e.g., denitrification) on gross primary productivity (GPP). Autotrophic N assimilation estimates derived from diel DO variability and GPP stoichiometry agreed closely with estimates based on integration of diel variation in NO3- concentration, although the correspondence of these metrics depended on the method used to estimate NO 3- baselines. In addition, day-to-day changes in nocturnal NO3- concentration maxima were strongly negatively correlated with day-to-day changes in GPP. Diel temperature variation in the Ichetucknee River indicated that this pattern could not be explained by hydrologic dispersion, while relationships between N assimilation and O 2 production at hourly intervals indicated minimal physiological lags. The estimated magnitude of heterotrophic assimilation was small, indicating that the relationship between changes in GPP and changes in nocturnal 3- maxima reflects sensitivity of denitrification to variation in exudation of labile organic matter by primary producers. We estimate that ~ 35% of denitrification may be fueled by the previous day's photosynthesis; this result is consistent with the broader hypothesis that the magnitude of autochthonous production in aquatic systems influences the fate of N via both direct and indirect mechanisms. © 2010, by the American Society of Limnology and Oceanography, Inc.Item Open Access Hydrologie and biotic influences on nitrate removal in a subtropical spring-fed river(Limnology and Oceanography, 2010-01-01) Heffernan, JB; Cohen, MJ; Frazer, TK; Thomas, RG; Rayfield, TJ; Gulley, J; Martin, JB; Delfmo, JJ; Graham, WDWe use a long-term chemical and hydrologic record in combination with longitudinal sampling and highfrequency nitrate (NO3-) measurements from in situ sensors to describe temporal and spatial patterns of nitrogen (N) inputs and removal in the spring-fed Ichetucknee River (Columbia County, Florida) and to determine the hydrological, geomorphic, and biological factors that influence those dynamics. Over a 20-yr period of record, NO 3-N removal averaged 118 kg N d-1 (0.77 g N m-2 d-1 ) over the upper 5 km of the Ichetucknee River. Three independent estimates of gross autotrophic N assimilation (from gross primary production, diel NO3- variation, and standing biomass) agreed closely but accounted for less than 20% of observed N removal. Longitudinal surveys indicate negligible or negative dissolved organic nitrogen and ammonium (NH4+) production, suggesting that denitrification is the predominant mechanism of N removal in this river. A positive relationship between discharge and the magnitude of NO3-N removal shows that interactions with the surrounding floodplain exert considerable influence at high flows, and longitudinal NO3- patterns indicate that N removal may be influenced by channel morphology. These results suggest a greater role for dissimilatory processes and hydrologic connectivity with hyporheic and floodplain sediments than has been previously recognized in highly productive spring-fed rivers of north Florida. While hydrologic variation is the primary determinant of variation in NO 3- removal within the Ichetucknee River, comparison across systems indicates that biotic characteristics can cause significant deviation from predictions based on purely physical models of relationships between river size and N removal. © 2010 by the American Society of Limnology and Oceanography, Inc.Item Open Access Inference of riverine nitrogen processing from longitudinal and diel variation in dual nitrate isotopes(Journal of Geophysical Research: Biogeosciences, 2012-03-01) Cohen, MJ; Heffernan, JB; Albertin, A; Martin, JBLongitudinal and diel measurements of dual isotope composition (δ15N and δ18O) in nitrate (NO3-N) were made in the Ichetucknee River, a large (∼8m3 s -1), entirely spring-fed river in North Florida, to determine whether isotopic variation can deconvolve assimilatory and dissimilatory removal. Comparing nitrate concentrations and isotope composition during the day and night we predicted (1) daytime declines in total fractionation due to low assimilatory fractionation and (2) diurnal variation in dual isotope coupling between 1:1 (assimilation) and 2:1 (denitrification). Five daytime longitudinal transects comprising 10 sampling stations showed consistent NO3-N removal (25-35% of inputs) and modest fractionation (15ε total between -2 and -6‰, enriching the residual nitrate pool). Lower fractionation (by ∼1‰) during two nighttime transects, suggests higher fractionation due to assimilation than denitrification. Total fractionation was significantly negatively associated with discharge, input [NO3-N], N mass removal, and fractional water loss. Despite well-constrained mass balance estimates that denitrification dominated total N removal, isotope coupling was consistently 1:1, both for longitudinal and diel sampling. Hourly samples on two dates at the downstream location showed significant diel variation in concentration ([NO3-N] amplitude = 60 to 90 μg N L-1) and isotope composition (δ15N amplitude = -0.7‰ to -1.6‰). Total fractionation differed between day and night only on one date but estimated assimilatory fractionation assuming constant denitrification was highly variable and implausibly large (for N, 15ε = -2 to -25‰), suggesting that fractionation and removal due to denitrification is not diurnally constant. Pronounced counterclockwise hysteresis in the relationship between [NO3-N] and δ15N suggests diel variation in N isotope dynamics. Together, low fractionation, isotope versus concentration hysteresis, and consistent 1:1 isotope coupling suggests that denitrification is controlled by NO 3- diffusion into the benthic sediments, the length of which is mediated by riverine oxygen dynamics. While using dual isotope behavior to deconvolve removal pathways was not possible, isotope measurements did yield valuable information about riverine N cycling and transformations. Copyright © 2012 by the American Geophysical Union.