Browsing by Author "Cook, James"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Ex Vivo MR Histology and Cytometric Feature Mapping Connect Three-dimensional in Vivo MR Images to Two-dimensional Histopathologic Images of Murine Sarcomas.(Radiology. Imaging cancer, 2021-05) Blocker, Stephanie J; Cook, James; Mowery, Yvonne M; Everitt, Jeffrey I; Qi, Yi; Hornburg, Kathryn J; Cofer, Gary P; Zapata, Fernando; Bassil, Alex M; Badea, Cristian T; Kirsch, David G; Johnson, G AllanPurpose To establish a platform for quantitative tissue-based interpretation of cytoarchitecture features from tumor MRI measurements. Materials and Methods In a pilot preclinical study, multicontrast in vivo MRI of murine soft-tissue sarcomas in 10 mice, followed by ex vivo MRI of fixed tissues (termed MR histology), was performed. Paraffin-embedded limb cross-sections were stained with hematoxylin-eosin, digitized, and registered with MRI. Registration was assessed by using binarized tumor maps and Dice similarity coefficients (DSCs). Quantitative cytometric feature maps from histologic slides were derived by using nuclear segmentation and compared with registered MRI, including apparent diffusion coefficients and transverse relaxation times as affected by magnetic field heterogeneity (T2* maps). Cytometric features were compared with each MR image individually by using simple linear regression analysis to identify the features of interest, and the goodness of fit was assessed on the basis of R2 values. Results Registration of MR images to histopathologic slide images resulted in mean DSCs of 0.912 for ex vivo MR histology and 0.881 for in vivo MRI. Triplicate repeats showed high registration repeatability (mean DSC, >0.9). Whole-slide nuclear segmentations were automated to detect nuclei on histopathologic slides (DSC = 0.8), and feature maps were generated for correlative analysis with MR images. Notable trends were observed between cell density and in vivo apparent diffusion coefficients (best line fit: R2 = 0.96, P < .001). Multiple cytoarchitectural features exhibited linear relationships with in vivo T2* maps, including nuclear circularity (best line fit: R2 = 0.99, P < .001) and variance in nuclear circularity (best line fit: R2 = 0.98, P < .001). Conclusion An infrastructure for registering and quantitatively comparing in vivo tumor MRI with traditional histologic analysis was successfully implemented in a preclinical pilot study of soft-tissue sarcomas. Keywords: MRI, Pathology, Animal Studies, Tissue Characterization Supplemental material is available for this article. © RSNA, 2021.Item Open Access Whole-slide cytometric feature mapping for distinguishing tumor genomic subtypes in HNSCC whole slide images.(The American journal of pathology, 2022-11) Blocker, Stephanie J; Morrison, Samantha; Everitt, Jeffrey I; Cook, James; Luo, Sheng; Watts, Tammara L; Mowery, Yvonne MHead and neck squamous cell carcinoma (HNSCC) is a heterogenous disease where, in advanced stages, clinical and pathological stages do not correlate with outcome. Molecular and genomic biomarkers for HNSCC classification have shown promise for prognostic and therapeutic applications. In this study, we utilize automated image analysis techniques in whole slide images of HNSCC tumors to identify relationships between cytometric features and genomic phenotypes. Hematoxylin and eosin-stained slides of HNSCC tumors (N=49) were obtained from the Cancer Imaging Archive (TCIA), along with accompanying clinical, pathological, genomic, and proteomic reports. Automated nuclear detection was performed across the entirety of slides, and cytometric feature maps were generated. Forty-one cytometric features were evaluated for associations with tumor grade, tumor stage, tumor subsite, and integrated genomic subtype (IGS). Thirty-two features demonstrated significant association with IGS when corrected for multiple comparisons. In particular, the basal subtype was visually distinguishable from the chromosomal instability and immune subtypes based on cytometric feature measurements. No features were significantly associated with tumor grade, stage, or subsite. This study provides preliminary evidence that features derived from tissue pathology slides could provide insights into genomic phenotypes of HNSCC.