Browsing by Author "Corwin, Eric I"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Open Access Finite-size effects in the microscopic critical properties of jammed configurations: A comprehensive study of the effects of different types of disorder.(Physical review. E, 2021-07) Charbonneau, Patrick; Corwin, Eric I; Dennis, R Cameron; Díaz Hernández Rojas, Rafael; Ikeda, Harukuni; Parisi, Giorgio; Ricci-Tersenghi, FedericoJamming criticality defines a universality class that includes systems as diverse as glasses, colloids, foams, amorphous solids, constraint satisfaction problems, neural networks, etc. A particularly interesting feature of this class is that small interparticle forces (f) and gaps (h) are distributed according to nontrivial power laws. A recently developed mean-field (MF) theory predicts the characteristic exponents of these distributions in the limit of very high spatial dimension, d→∞ and, remarkably, their values seemingly agree with numerical estimates in physically relevant dimensions, d=2 and 3. These exponents are further connected through a pair of inequalities derived from stability conditions, and both theoretical predictions and previous numerical investigations suggest that these inequalities are saturated. Systems at the jamming point are thus only marginally stable. Despite the key physical role played by these exponents, their systematic evaluation has yet to be attempted. Here, we carefully test their value by analyzing the finite-size scaling of the distributions of f and h for various particle-based models for jamming. Both dimension and the direction of approach to the jamming point are also considered. We show that, in all models, finite-size effects are much more pronounced in the distribution of h than in that of f. We thus conclude that gaps are correlated over considerably longer scales than forces. Additionally, remarkable agreement with MF predictions is obtained in all but one model, namely near-crystalline packings. Our results thus help to better delineate the domain of the jamming universality class. We furthermore uncover a secondary linear regime in the distribution tails of both f and h. This surprisingly robust feature is understood to follow from the (near) isostaticity of our configurations.Item Open Access Gardner Phenomenology in Minimally Polydisperse Crystalline SystemsCharbonneau, Patrick; Corwin, Eric I; Fu, Lin; Tsekenis, Georgios; van der Naald, MichaelWe study the structure and dynamics of crystals of minimally polydisperse hard spheres at high pressures. Structurally, they exhibit a power-law scaling in their probability distribution of weak forces and small interparticle gaps as well as a flat density of vibrational states. Dynamically, they display anomalous aging beyond a characteristic pressure. Although essentially crystalline, these solids thus display features reminiscent of the Gardner phase observed in certain amorphous solids. Because preparing these materials is fast and facile, they are ideal for testing a theory of amorphous materials. They are also amenable to experimental realizations in commercially-available particulate systems.Item Open Access Gardner physics in amorphous solids and beyond.(The Journal of chemical physics, 2019-07) Berthier, Ludovic; Biroli, Giulio; Charbonneau, Patrick; Corwin, Eric I; Franz, Silvio; Zamponi, FrancescoOne of the most remarkable predictions to emerge out of the exact infinite-dimensional solution of the glass problem is the Gardner transition. Although this transition was first theoretically proposed a generation ago for certain mean-field spin glass models, its materials relevance was only realized when a systematic effort to relate glass formation and jamming was undertaken. A number of nontrivial physical signatures associated with the Gardner transition have since been considered in various areas, from models of structural glasses to constraint satisfaction problems. This perspective surveys these recent advances and discusses the novel research opportunities that arise from them.Item Open Access Interplay between percolation and glassiness in the random Lorentz gas.(Physical review. E, 2021-03) Biroli, Giulio; Charbonneau, Patrick; Corwin, Eric I; Hu, Yi; Ikeda, Harukuni; Szamel, Grzegorz; Zamponi, FrancescoThe random Lorentz gas (RLG) is a minimal model of transport in heterogeneous media that exhibits a continuous localization transition controlled by void space percolation. The RLG also provides a toy model of particle caging, which is known to be relevant for describing the discontinuous dynamical transition of glasses. In order to clarify the interplay between the seemingly incompatible percolation and caging descriptions of the RLG, we consider its exact mean-field solution in the infinite-dimensional d→∞ limit and perform numerics in d=2...20. We find that for sufficiently high d the mean-field caging transition precedes and prevents the percolation transition, which only happens on timescales diverging with d. We further show that activated processes related to rare cage escapes destroy the glass transition in finite dimensions, leading to a rich interplay between glassiness and percolation physics. This advance suggests that the RLG can be used as a toy model to develop a first-principle description of particle hopping in structural glasses.Item Open Access Jamming criticality revealed by removing localized buckling excitations.(Phys Rev Lett, 2015-03-27) Charbonneau, Patrick; Corwin, Eric I; Parisi, Giorgio; Zamponi, FrancescoRecent theoretical advances offer an exact, first-principles theory of jamming criticality in infinite dimension as well as universal scaling relations between critical exponents in all dimensions. For packings of frictionless spheres near the jamming transition, these advances predict that nontrivial power-law exponents characterize the critical distribution of (i) small interparticle gaps and (ii) weak contact forces, both of which are crucial for mechanical stability. The scaling of the interparticle gaps is known to be constant in all spatial dimensions d-including the physically relevant d=2 and 3, but the value of the weak force exponent remains the object of debate and confusion. Here, we resolve this ambiguity by numerical simulations. We construct isostatic jammed packings with extremely high accuracy, and introduce a simple criterion to separate the contribution of particles that give rise to localized buckling excitations, i.e., bucklers, from the others. This analysis reveals the remarkable dimensional robustness of mean-field marginality and its associated criticality.Item Open Access Universal microstructure and mechanical stability of jammed packings.(Phys Rev Lett, 2012-11-16) Charbonneau, Patrick; Corwin, Eric I; Parisi, Giorgio; Zamponi, FrancescoThe mechanical properties of jammed packings depend sensitively on their detailed local structure. Here we provide a complete characterization of the pair correlation close to contact and of the force distribution of jammed frictionless spheres. In particular we discover a set of new scaling relations that connect the behavior of particles bearing small forces and those bearing no force but that are almost in contact. By performing systematic investigations for spatial dimensions d=3-10, in a wide density range and using different preparation protocols, we show that these scalings are indeed universal. We therefore establish clear milestones for the emergence of a complete microscopic theory of jamming. This description is also crucial for high-precision force experiments in granular systems.Item Open Access Universal Non-Debye Scaling in the Density of States of Amorphous Solids.(Phys Rev Lett, 2016-07-22) Charbonneau, Patrick; Corwin, Eric I; Parisi, Giorgio; Poncet, Alexis; Zamponi, FrancescoAt the jamming transition, amorphous packings are known to display anomalous vibrational modes with a density of states (DOS) that remains constant at low frequency. The scaling of the DOS at higher packing fractions remains, however, unclear. One might expect to find a simple Debye scaling, but recent results from effective medium theory and the exact solution of mean-field models both predict an anomalous, non-Debye scaling. Being mean-field in nature, however, these solutions are only strictly valid in the limit of infinite spatial dimension, and it is unclear what value they have for finite-dimensional systems. Here, we study packings of soft spheres in dimensions 3 through 7 and find, away from jamming, a universal non-Debye scaling of the DOS that is consistent with the mean-field predictions. We also consider how the soft mode participation ratio evolves as dimension increases.Item Open Access Universal Non-Debye Scaling in the Density of States of Amorphous Solids.(Phys Rev Lett, 2016-07-22) Charbonneau, Patrick; Corwin, Eric I; Parisi, G; Poncet, A; Zamponi, FrancescoAt the jamming transition, amorphous packings are known to display anomalous vibrational modes with a density of states (DOS) that remains constant at low frequency. The scaling of the DOS at higher packing fractions remains, however, unclear. One might expect to find a simple Debye scaling, but recent results from effective medium theory and the exact solution of mean-field models both predict an anomalous, non-Debye scaling. Being mean-field in nature, however, these solutions are only strictly valid in the limit of infinite spatial dimension, and it is unclear what value they have for finite-dimensional systems. Here, we study packings of soft spheres in dimensions 3 through 7 and find, away from jamming, a universal non-Debye scaling of the DOS that is consistent with the mean-field predictions. We also consider how the soft mode participation ratio evolves as dimension increases.