Browsing by Author "Cousins, Scott"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Accelerated Brain Atrophy, Microstructural Decline and Connectopathy in Age-Related Macular Degeneration.(Biomedicines, 2024-01-10) Stout, Jacques A; Mahzarnia, Ali; Dai, Rui; Anderson, Robert J; Cousins, Scott; Zhuang, Jie; Lad, Eleonora M; Whitaker, Diane B; Madden, David J; Potter, Guy G; Whitson, Heather E; Badea, AlexandraAge-related macular degeneration (AMD) has recently been linked to cognitive impairment. We hypothesized that AMD modifies the brain aging trajectory, and we conducted a longitudinal diffusion MRI study on 40 participants (20 with AMD and 20 controls) to reveal the location, extent, and dynamics of AMD-related brain changes. Voxel-based analyses at the first visit identified reduced volume in AMD participants in the cuneate gyrus, associated with vision, and the temporal and bilateral cingulate gyrus, linked to higher cognition and memory. The second visit occurred 2 years after the first and revealed that AMD participants had reduced cingulate and superior frontal gyrus volumes, as well as lower fractional anisotropy (FA) for the bilateral occipital lobe, including the visual and the superior frontal cortex. We detected faster rates of volume and FA reduction in AMD participants in the left temporal cortex. We identified inter-lingual and lingual-cerebellar connections as important differentiators in AMD participants. Bundle analyses revealed that the lingual gyrus had a lower streamline length in the AMD participants at the first visit, indicating a connection between retinal and brain health. FA differences in select inter-lingual and lingual cerebellar bundles at the second visit showed downstream effects of vision loss. Our analyses revealed widespread changes in AMD participants, beyond brain networks directly involved in vision processing.Item Open Access Multifocal serous retinopathy with pemigatinib therapy for metastatic colon adenocarcinoma.(International journal of retina and vitreous, 2021-04) Alekseev, Oleg; Ojuok, Effy; Cousins, ScottBackground
Pemigatinib is an inhibitor of the fibroblast growth factor receptor (FGFR), recently approved for the treatment of cholangiocarcinoma. FGFR retinopathy is a newly recognized entity, with only two other FGFR inhibitors reported to cause serous retinopathy. Herein, we describe the first published report of a multifocal serous retinopathy secondary to pemigatinib.Case presentation
A 67-year-old male with stage 4A metastatic colon adenocarcinoma undergoing systemic therapy with pemigatinib was found to have developed bilateral multifocal serous retinopathy. Fundus autofluorescence showed corresponding multifocal hypoautofluorescent foci, whereas fluorescein angiography and indocyanine green angiography were unremarkable. Subretinal fluid resolved rapidly after discontinuation of pemigatinib.Conclusions
Multifocal serous retinopathy appears to be a class effect of FGFR inhibitors. FGFR retinopathy clinically resembles MEK retinopathy-both feature multifocal subretinal fluid, low visual significance, and quick resolution. However, given that FGFR inhibitors have a broader molecular range than MEK inhibitors, further characterization of FGFR retinopathy is necessary to generate management guidelines.Item Open Access Relationship between neural functional connectivity and memory performance in age-related macular degeneration.(Neurobiology of aging, 2020-11) Zuo, Xintong; Zhuang, Jie; Chen, Nan-Kuei; Cousins, Scott; Cunha, Priscila; Lad, Eleonora M; Madden, David J; Potter, Guy; Whitson, Heather EAge-related macular degeneration (AMD) has been linked to memory deficits, with no established neural mechanisms. We collected resting-state brain functional magnetic resonance imaging and standardized verbal recall tests from 42 older adults with AMD and 41 age-matched controls. We used seed-based whole brain analysis to quantify the strength of functional connectivity between hubs of the default mode network and a network of medial temporal regions relevant for memory. Our results indicated neither memory performance nor network connectivity differed by AMD status. However, the AMD participants exhibited stronger relationships than the controls between memory performance and connectivity from the memory network hub (left parahippocampal) to 2 other regions: the left temporal pole and the right superior/middle frontal gyri. Also, the connectivity between the medial prefrontal cortex and posterior cingulate cortex of default mode network correlated more strongly with memory performance in AMD compared to control. We concluded that stronger brain-behavior correlation in AMD may suggest a role for region-specific connectivity in supporting memory in the context of AMD.Item Open Access The Project Baseline Health Study: a step towards a broader mission to map human health.(NPJ digital medicine, 2020-01) Arges, Kristine; Assimes, Themistocles; Bajaj, Vikram; Balu, Suresh; Bashir, Mustafa R; Beskow, Laura; Blanco, Rosalia; Califf, Robert; Campbell, Paul; Carin, Larry; Christian, Victoria; Cousins, Scott; Das, Millie; Dockery, Marie; Douglas, Pamela S; Dunham, Ashley; Eckstrand, Julie; Fleischmann, Dominik; Ford, Emily; Fraulo, Elizabeth; French, John; Gambhir, Sanjiv S; Ginsburg, Geoffrey S; Green, Robert C; Haddad, Francois; Hernandez, Adrian; Hernandez, John; Huang, Erich S; Jaffe, Glenn; King, Daniel; Koweek, Lynne H; Langlotz, Curtis; Liao, Yaping J; Mahaffey, Kenneth W; Marcom, Kelly; Marks, William J; Maron, David; McCabe, Reid; McCall, Shannon; McCue, Rebecca; Mega, Jessica; Miller, David; Muhlbaier, Lawrence H; Munshi, Rajan; Newby, L Kristin; Pak-Harvey, Ezra; Patrick-Lake, Bray; Pencina, Michael; Peterson, Eric D; Rodriguez, Fatima; Shore, Scarlet; Shah, Svati; Shipes, Steven; Sledge, George; Spielman, Susie; Spitler, Ryan; Schaack, Terry; Swamy, Geeta; Willemink, Martin J; Wong, Charlene AThe Project Baseline Health Study (PBHS) was launched to map human health through a comprehensive understanding of both the health of an individual and how it relates to the broader population. The study will contribute to the creation of a biomedical information system that accounts for the highly complex interplay of biological, behavioral, environmental, and social systems. The PBHS is a prospective, multicenter, longitudinal cohort study that aims to enroll thousands of participants with diverse backgrounds who are representative of the entire health spectrum. Enrolled participants will be evaluated serially using clinical, molecular, imaging, sensor, self-reported, behavioral, psychological, environmental, and other health-related measurements. An initial deeply phenotyped cohort will inform the development of a large, expanded virtual cohort. The PBHS will contribute to precision health and medicine by integrating state of the art testing, longitudinal monitoring and participant engagement, and by contributing to the development of an improved platform for data sharing and analysis.