Browsing by Author "Crabtree, Donna M"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A high-throughput in vitro drug screen in a genetically engineered mouse model of diffuse intrinsic pontine glioma identifies BMS-754807 as a promising therapeutic agent.(PLoS One, 2015) Halvorson, Kyle G; Barton, Kelly L; Schroeder, Kristin; Misuraca, Katherine L; Hoeman, Christine; Chung, Alex; Crabtree, Donna M; Cordero, Francisco J; Singh, Raj; Spasojevic, Ivan; Berlow, Noah; Pal, Ranadip; Becher, Oren JDiffuse intrinsic pontine gliomas (DIPGs) represent a particularly lethal type of pediatric brain cancer with no effective therapeutic options. Our laboratory has previously reported the development of genetically engineered DIPG mouse models using the RCAS/tv-a system, including a model driven by PDGF-B, H3.3K27M, and p53 loss. These models can serve as a platform in which to test novel therapeutics prior to the initiation of human clinical trials. In this study, an in vitro high-throughput drug screen as part of the DIPG preclinical consortium using cell-lines derived from our DIPG models identified BMS-754807 as a drug of interest in DIPG. BMS-754807 is a potent and reversible small molecule multi-kinase inhibitor with many targets including IGF-1R, IR, MET, TRKA, TRKB, AURKA, AURKB. In vitro evaluation showed significant cytotoxic effects with an IC50 of 0.13 μM, significant inhibition of proliferation at a concentration of 1.5 μM, as well as inhibition of AKT activation. Interestingly, IGF-1R signaling was absent in serum-free cultures from the PDGF-B; H3.3K27M; p53 deficient model suggesting that the antitumor activity of BMS-754807 in this model is independent of IGF-1R. In vivo, systemic administration of BMS-754807 to DIPG-bearing mice did not prolong survival. Pharmacokinetic analysis demonstrated that tumor tissue drug concentrations of BMS-754807 were well below the identified IC50, suggesting that inadequate drug delivery may limit in vivo efficacy. In summary, an unbiased in vitro drug screen identified BMS-754807 as a potential therapeutic agent in DIPG, but BMS-754807 treatment in vivo by systemic delivery did not significantly prolong survival of DIPG-bearing mice.Item Open Access The MARBLE Study Protocol: Modulating ApoE Signaling to Reduce Brain Inflammation, DeLirium, and PostopErative Cognitive Dysfunction.(Journal of Alzheimer's disease : JAD, 2020-01) VanDusen, Keith W; Eleswarpu, Sarada; Moretti, Eugene W; Devinney, Michael J; Crabtree, Donna M; Laskowitz, Daniel T; Woldorff, Marty G; Roberts, Kenneth C; Whittle, John; Browndyke, Jeffrey N; Cooter, Mary; Rockhold, Frank W; Anakwenze, Oke; Bolognesi, Michael P; Easley, Mark E; Ferrandino, Michael N; Jiranek, William A; Berger, Miles; MARBLE Study InvestigatorsBACKGROUND:Perioperative neurocognitive disorders (PND) are common complications in older adults associated with increased 1-year mortality and long-term cognitive decline. One risk factor for worsened long-term postoperative cognitive trajectory is the Alzheimer's disease (AD) genetic risk factor APOE4. APOE4 is thought to elevate AD risk partly by increasing neuroinflammation, which is also a theorized mechanism for PND. Yet, it is unclear whether modulating apoE4 protein signaling in older surgical patients would reduce PND risk or severity. OBJECTIVE:MARBLE is a randomized, blinded, placebo-controlled phase II sequential dose escalation trial designed to evaluate perioperative administration of an apoE mimetic peptide drug, CN-105, in older adults (age≥60 years). The primary aim is evaluating the safety of CN-105 administration, as measured by adverse event rates in CN-105 versus placebo-treated patients. Secondary aims include assessing perioperative CN-105 administration feasibility and its efficacy for reducing postoperative neuroinflammation and PND severity. METHODS:201 patients undergoing non-cardiac, non-neurological surgery will be randomized to control or CN-105 treatment groups and receive placebo or drug before and every six hours after surgery, for up to three days after surgery. Chart reviews, pre- and postoperative cognitive testing, delirium screening, and blood and CSF analyses will be performed to examine effects of CN-105 on perioperative adverse event rates, cognition, and neuroinflammation. Trial results will be disseminated by presentations at conferences and peer-reviewed publications. CONCLUSION:MARBLE is a transdisciplinary study designed to measure CN-105 safety and efficacy for preventing PND in older adults and to provide insight into the pathogenesis of these geriatric syndromes.