Browsing by Author "Cutti, Andrea G."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access A SIMPLIFIED CAD MODEL OF TRANS-RADIAL SOCKETS SUITABLE FOR SUBJECT ENERGY EXPENDITURE ASSESSMENT(2005) Cutti, Andrea G.; Casamenti, E.; Cappello, A.; Davalli, A.The measurement of the mechanical energy expenditure of a subject in accomplishing a given motor task has been reported as a valuable index to quantitatively assess his/her motor ability or pathology stage [1-3]. In order to compute this parameter applying inverse dynamics techniques [1], the subject’s joint kinematics during the motor task and the inertial parameters (i.e. the mass, centre of mass and inertia matrix) of his/her moving limbs must be known. While the joint kinematics can be measured in-vivo using a motion analysis system (e.g. an optoelectronic system), the inertial parameters of human limbs are usually retrieved from anthropometric tables [1]. When the subject acquired is an amputee fitted with an artificial limb the problem of determining the prosthesis inertial parameters therefore arises. Considering a trans-radial amputation levels, a prosthesis is composed by standardized parts (hand, battery, lamination ring and actuators), and the subject-specific inner and outer sockets: since the CAD models of these parts are usually unavailable their single and cumulative inertia parameters remain unknown. The aim of this work was therefore to propose two possible simplified CAD models for trans-radial prostheses and to identify among them which one leads to the best estimation of the mechanical energy expenditure during a flexion-extension of the elbow in the sagittal and horizontal plane and during a shoulder internal-external rotation. The models, of increasing complexity, take into account the sockets, battery and lamination ring.Item Open Access PERFORMANCE EVALUATION OF THE NEW OTTO BOCK “DynamicArm” BY MEANS OF BIOMECHANICAL MODELLING(2005) Cutti, Andrea G.; Davalli, Angelo; Valeria, Gazzotti; Andrei, NinuThrough infra-red motion analysis systems it is possible to acquire the 3D joint kinematics of a patient while performing every day activities. These data, combined with a biomechanical model of the anatomical structures under investigation and clinical rating scales, can form the basis for an objective assessment of the patient motor ability. When the subject acquired is an amputee fitted with a new prosthetic arm, the information provided can be useful not only for the practitioner but also for the prosthesis designer. The aim of this work is to give an example of this kind of clinical/technology assessment, presenting the results obtained for a young trans-humeral amputee fitted with a prototype of the new Otto Bock DynamicArm. In particular, the analysis intended to quantitatively evaluate: 1) the performances of the Otto Bock arm, and in particular of the electromechanic elbow, when controlled in-vivo by the patient EMG signals; 2) how the patient controls the prosthesis, in order to identify critical movements and prevent possible disorders; 3) if the new prosthesis increases the patient abilities.