Browsing by Author "Dai, Joanne"
Results Per Page
Sort Options
Item Open Access Epstein-Barr virus ensures B cell survival by uniquely modulating apoptosis at early and late times after infection.(Elife, 2017-04-20) Price, Alexander M; Dai, Joanne; Bazot, Quentin; Patel, Luv; Nikitin, Pavel A; Djavadian, Reza; Winter, Peter S; Salinas, Cristina A; Barry, Ashley Perkins; Wood, Kris C; Johannsen, Eric C; Letai, Anthony; Allday, Martin J; Luftig, Micah ALatent Epstein-Barr virus (EBV) infection is causally linked to several human cancers. EBV expresses viral oncogenes that promote cell growth and inhibit the apoptotic response to uncontrolled proliferation. The EBV oncoprotein LMP1 constitutively activates NFκB and is critical for survival of EBV-immortalized B cells. However, during early infection EBV induces rapid B cell proliferation with low levels of LMP1 and little apoptosis. Therefore, we sought to define the mechanism of survival in the absence of LMP1/NFκB early after infection. We used BH3 profiling to query mitochondrial regulation of apoptosis and defined a transition from uninfected B cells (BCL-2) to early-infected (MCL-1/BCL-2) and immortalized cells (BFL-1). This dynamic change in B cell survival mechanisms is unique to virus-infected cells and relies on regulation of MCL-1 mitochondrial localization and BFL-1 transcription by the viral EBNA3A protein. This study defines a new role for EBNA3A in the suppression of apoptosis with implications for EBV lymphomagenesis.Item Open Access Epstein-Barr virus infection phenocopies apoptosis regulation in germinal center B cells(2019) Dai, JoanneThe Epstein-Barr virus (EBV) is a ubiquitous human pathogen that infects more than >95% of the global adult population. In immunocompetent individuals, EBV infection is asymptomatic and takes place in the oral cavity, where EBV establishes a life-long latent infection in memory B cells by temporally regulating viral gene expression to mimic B cell maturation. In immunocompromised individuals, however, EBV infection can give rise to infectious mononucleosis, epithelial carcinomas, and lymphomas. To model EBV-mediated lymphomagenesis, infection of EBV in vitro generates growth-transformed and immortalized lymphoblastoid cell lines (LCLs), which allows for the characterization of dynamic viral and host gene expression. Our lab has found that the early phase after infection is transcriptionally distinct from the late phase when infected B cells are fully growth-transformed. We also found that apoptosis regulation in each phase of infection is uniquely regulated by a single viral nuclear protein that regulates host gene expression through epigenetic mechanisms. To determine if apoptosis regulation in EBV-infected B cells is virus-specific, I have characterized apoptosis regulation in uninfected maturing B cells and mitogen-stimulated B cells. For the upregulation of one anti-apoptotic protein, EBV infection promotes a chromatin structure resembling that in germinal center light zone B cells, indicating that EBV phenocopies germinal center chromatin regulation to promote apoptosis resistance. In addition to apoptosis regulation, EBV infection phenocopies various aspects of GC B cells and plasmablasts, where the inhibition of plasma cell differentiation increases the efficiency of immortalization and growth-transformation of B cells infected in vitro. The work outlined in this dissertation demonstrate that viral and host genes cooperate in mediating apoptosis regulation, differentiation, and ultimately fate-determination of EBV-infected B cells.