Browsing by Author "Dannhauer, Moritz"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Application of long-interval paired-pulse transcranial magnetic stimulation to motion-sensitive visual cortex does not lead to changes in motion discrimination.(Neuroscience letters, 2020-05-12) Gamboa, Olga Lucia; Brito, Alexandra; Abzug, Zachary; D'Arbeloff, Tracy; Beynel, Lysianne; Wing, Erik A; Dannhauer, Moritz; Palmer, Hannah; Hilbig, Susan A; Crowell, Courtney A; Liu, Sicong; Donaldson, Rachel; Cabeza, Roberto; Davis, Simon W; Peterchev, Angel V; Sommer, Marc A; Appelbaum, Lawrence GThe perception of visual motion is dependent on a set of occipitotemporal regions that are readily accessible to neuromodulation. The current study tested if paired-pulse Transcranial Magnetic Stimulation (ppTMS) could modulate motion perception by stimulating the occipital cortex as participants viewed near-threshold motion dot stimuli. In this sham-controlled study, fifteen subjects completed two sessions. On the first visit, resting motor threshold (RMT) was assessed, and participants performed an adaptive direction discrimination task to determine individual motion sensitivity. During the second visit, subjects performed the task with three difficulty levels as TMS pulses were delivered 150 and 50 ms prior to motion stimulus onset at 120% RMT, under the logic that the cumulative inhibitory effect of these pulses would alter motion sensitivity. ppTMS was delivered at one of two locations: 3 cm dorsal and 5 cm lateral to inion (scalp-based coordinate), or at the site of peak activation for "motion" according to the NeuroSynth fMRI database (meta-analytic coordinate). Sham stimulation was delivered on one-third of trials by tilting the coil 90°. Analyses showed no significant active-versus-sham effects of ppTMS when stimulation was delivered to the meta-analytic (p = 0.15) or scalp-based coordinates (p = 0.17), which were separated by 29 mm on average. Active-versus-sham stimulation differences did not interact with either stimulation location (p = 0.12) or difficulty (p = 0.33). These findings fail to support the hypothesis that long-interval ppTMS recruits inhibitory processes in motion-sensitive cortex but must be considered within the limited parameters used in this design.Item Open Access Intensity- and timing-dependent modulation of motion perception with transcranial magnetic stimulation of visual cortex.(Neuropsychologia, 2020-10) Gamboa Arana, Olga Lucia; Palmer, Hannah; Dannhauer, Moritz; Hile, Connor; Liu, Sicong; Hamdan, Rena; Brito, Alexandra; Cabeza, Roberto; Davis, Simon W; Peterchev, Angel V; Sommer, Marc A; Appelbaum, Lawrence GDespite the widespread use of transcranial magnetic stimulation (TMS) in research and clinical care, the dose-response relations and neurophysiological correlates of modulatory effects remain relatively unexplored. To fill this gap, we studied modulation of visual processing as a function of TMS parameters. Our approach combined electroencephalography (EEG) with application of single pulse TMS to visual cortex as participants performed a motion perception task. During each participants' first visit, motion coherence thresholds, 64-channel visual evoked potentials (VEPs), and TMS resting motor thresholds (RMT) were measured. In second and third visits, single pulse TMS was delivered at one of two latencies, either 30 ms before the onset of motion or at the onset latency of the N2 VEP component derived from the first session. TMS was delivered at 0%, 80%, 100%, or 120% of RMT over the site of N2 peak activity, or at 120% over vertex. Behavioral results demonstrated a significant main effect of TMS timing on accuracy, with better performance when TMS was applied at the N2-Onset timing versus Pre-Onset, as well as a significant interaction, indicating that 80% intensity produced higher accuracy than other conditions at the N2-Onset. TMS effects on the P3 VEP showed reduced amplitudes in the 80% Pre-Onset condition, an increase for the 120% N2-Onset condition, and monotonic amplitude scaling with stimulation intensity. The N2 component was not affected by TMS. These findings reveal the influence of TMS intensity and timing on visual perception and electrophysiological responses, with optimal facilitation at stimulation intensities below RMT.Item Open Access Site-Specific Effects of Online rTMS during a Working Memory Task in Healthy Older Adults.(Brain sciences, 2020-04-27) Beynel, Lysianne; Davis, Simon W; Crowell, Courtney A; Dannhauer, Moritz; Lim, Wesley; Palmer, Hannah; Hilbig, Susan A; Brito, Alexandra; Hile, Connor; Luber, Bruce; Lisanby, Sarah H; Peterchev, Angel V; Cabeza, Roberto; Appelbaum, Lawrence GThe process of manipulating information within working memory is central to many cognitive functions, but also declines rapidly in old age. Improving this process could markedly enhance the health-span in older adults. The current pre-registered, randomized and placebo-controlled study tested the potential of online repetitive transcranial magnetic stimulation (rTMS) applied at 5 Hz over the left lateral parietal cortex to enhance working memory manipulation in healthy elderly adults. rTMS was applied, while participants performed a delayed-response alphabetization task with two individually titrated levels of difficulty. Coil placement and stimulation amplitude were calculated from fMRI activation maps combined with electric field modeling on an individual-subject basis in order to standardize dosing at the targeted cortical location. Contrary to the a priori hypothesis, active rTMS significantly decreased accuracy relative to sham, and only in the hardest difficulty level. When compared to the results from our previous study, in which rTMS was applied over the left prefrontal cortex, we found equivalent effect sizes but opposite directionality suggesting a site-specific effect of rTMS. These results demonstrate engagement of cortical working memory processing using a novel TMS targeting approach, while also providing prescriptions for future studies seeking to enhance memory through rTMS.Item Open Access TAP: targeting and analysis pipeline for optimization and verification of coil placement in transcranial magnetic stimulation.(Journal of neural engineering, 2022-04) Dannhauer, Moritz; Huang, Ziping; Beynel, Lysianne; Wood, Eleanor; Bukhari-Parlakturk, Noreen; Peterchev, Angel VObjective.Transcranial magnetic stimulation (TMS) can modulate brain function via an electric field (E-field) induced in a brain region of interest (ROI). The ROI E-field can be computationally maximized and set to match a specific reference using individualized head models to find the optimal coil placement and stimulus intensity. However, the available software lacks many practical features for prospective planning of TMS interventions and retrospective evaluation of the experimental targeting accuracy.Approach.The TMS targeting and analysis pipeline (TAP) software uses an MRI/fMRI-derived brain target to optimize coil placement considering experimental parameters such as the subject's hair thickness and coil placement restrictions. The coil placement optimization is implemented in SimNIBS 3.2, for which an additional graphical user interface (TargetingNavigator) is provided to visualize/adjust procedural parameters. The coil optimization process also computes the E-field at the target, allowing the selection of the TMS device intensity setting to achieve specific E-field strengths. The optimized coil placement information is prepared for neuronavigation software, which supports targeting during the TMS procedure. The neuronavigation system can record the coil placement during the experiment, and these data can be processed in TAP to quantify the accuracy of the experimental TMS coil placement and induced E-field.Main results.TAP was demonstrated in a study consisting of three repetitive TMS sessions in five subjects. TMS was delivered by an experienced operator under neuronavigation with the computationally optimized coil placement. Analysis of the experimental accuracy from the recorded neuronavigation data indicated coil location and orientation deviations up to about 2 mm and 2°, respectively, resulting in an 8% median decrease in the target E-field magnitude compared to the optimal placement.Significance.TAP supports navigated TMS with a variety of features for rigorous and reproducible stimulation delivery, including planning and evaluation of coil placement and intensity selection for E-field-based dosing.