Browsing by Author "Davis, Simon W"
Now showing 1 - 20 of 24
Results Per Page
Sort Options
Item Open Access A watershed model of individual differences in fluid intelligence(Neuropsychologia, 2016-10) Kievit, Rogier A; Davis, Simon W; Griffiths, John; Correia, Marta M; Cam-Can; Henson, Richard NItem Open Access Adult age differences in functional connectivity during executive control.(Neuroimage, 2010-08-15) Madden, David J; Costello, Matthew C; Dennis, Nancy A; Davis, Simon W; Shepler, Anne M; Spaniol, Julia; Bucur, Barbara; Cabeza, RobertoTask switching requires executive control processes that undergo age-related decline. Previous neuroimaging studies have identified age-related differences in brain activation associated with global switching effects (dual-task blocks versus single-task blocks), but age-related differences in activation during local switching effects (switch trials versus repeat trials, within blocks) have not been investigated. This experiment used functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI), to examine adult age differences in task switching across adjacent trials (i.e., local task switching). During fMRI scanning, participants performed a cued, word categorization task. From interspersed cue-only trials, switch-related processing associated with the cue was estimated separately from the target. Activation associated with task switching, within a distributed frontoparietal network, differed for cue- and target-related processing. The magnitude of event-related activation for task switching was similar for younger adults (n=20; 18-27years) and older adults (n=20; 60-85years), although activation sustained throughout the on-tasks periods exhibited some age-related decline. Critically, the functional connectivity of switch-related regions, during cue processing, was higher for younger adults than for older adults, whereas functional connectivity during target processing was comparable across the age groups. Further, individual differences in cue-related functional connectivity shared a substantial portion of the age-related variability in the efficiency of target categorization response (drift rate). This age-related difference in functional connectivity, however, was independent of white matter integrity within task-relevant regions. These findings highlight the functional connectivity of frontoparietal activation as a potential source of age-related decline in executive control.Item Open Access Age mediation of frontoparietal activation during visual feature search.(Neuroimage, 2014-11-15) Madden, David J; Parks, Emily L; Davis, Simon W; Diaz, Michele T; Potter, Guy G; Chou, Ying-hui; Chen, Nan-kuei; Cabeza, RobertoActivation of frontal and parietal brain regions is associated with attentional control during visual search. We used fMRI to characterize age-related differences in frontoparietal activation in a highly efficient feature search task, detection of a shape singleton. On half of the trials, a salient distractor (a color singleton) was present in the display. The hypothesis was that frontoparietal activation mediated the relation between age and attentional capture by the salient distractor. Participants were healthy, community-dwelling individuals, 21 younger adults (19-29 years of age) and 21 older adults (60-87 years of age). Top-down attention, in the form of target predictability, was associated with an improvement in search performance that was comparable for younger and older adults. The increase in search reaction time (RT) associated with the salient distractor (attentional capture), standardized to correct for generalized age-related slowing, was greater for older adults than for younger adults. On trials with a color singleton distractor, search RT increased as a function of increasing activation in frontal regions, for both age groups combined, suggesting increased task difficulty. Mediational analyses disconfirmed the hypothesized model, in which frontal activation mediated the age-related increase in attentional capture, but supported an alternative model in which age was a mediator of the relation between frontal activation and capture.Item Open Access Age-related sensitivity to task-related modulation of language-processing networks(Neuropsychologia, 2014-10) Davis, Simon W; Zhuang, Jie; Wright, Paul; Tyler, Lorraine KItem Open Access An fMRI investigation of posttraumatic flashbacks(Brain and Cognition, 2013-02) Whalley, Matthew G; Kroes, Marijn CW; Huntley, Zoe; Rugg, Michael D; Davis, Simon W; Brewin, Chris RItem Open Access Application of long-interval paired-pulse transcranial magnetic stimulation to motion-sensitive visual cortex does not lead to changes in motion discrimination.(Neuroscience letters, 2020-05-12) Gamboa, Olga Lucia; Brito, Alexandra; Abzug, Zachary; D'Arbeloff, Tracy; Beynel, Lysianne; Wing, Erik A; Dannhauer, Moritz; Palmer, Hannah; Hilbig, Susan A; Crowell, Courtney A; Liu, Sicong; Donaldson, Rachel; Cabeza, Roberto; Davis, Simon W; Peterchev, Angel V; Sommer, Marc A; Appelbaum, Lawrence GThe perception of visual motion is dependent on a set of occipitotemporal regions that are readily accessible to neuromodulation. The current study tested if paired-pulse Transcranial Magnetic Stimulation (ppTMS) could modulate motion perception by stimulating the occipital cortex as participants viewed near-threshold motion dot stimuli. In this sham-controlled study, fifteen subjects completed two sessions. On the first visit, resting motor threshold (RMT) was assessed, and participants performed an adaptive direction discrimination task to determine individual motion sensitivity. During the second visit, subjects performed the task with three difficulty levels as TMS pulses were delivered 150 and 50 ms prior to motion stimulus onset at 120% RMT, under the logic that the cumulative inhibitory effect of these pulses would alter motion sensitivity. ppTMS was delivered at one of two locations: 3 cm dorsal and 5 cm lateral to inion (scalp-based coordinate), or at the site of peak activation for "motion" according to the NeuroSynth fMRI database (meta-analytic coordinate). Sham stimulation was delivered on one-third of trials by tilting the coil 90°. Analyses showed no significant active-versus-sham effects of ppTMS when stimulation was delivered to the meta-analytic (p = 0.15) or scalp-based coordinates (p = 0.17), which were separated by 29 mm on average. Active-versus-sham stimulation differences did not interact with either stimulation location (p = 0.12) or difficulty (p = 0.33). These findings fail to support the hypothesis that long-interval ppTMS recruits inhibitory processes in motion-sensitive cortex but must be considered within the limited parameters used in this design.Item Open Access Cerebral white matter connectivity, cognition, and age-related macular degeneration.(NeuroImage. Clinical, 2021-02-23) Zhuang, Jie; Madden, David J; Cunha, Priscila; Badea, Alexandra; Davis, Simon W; Potter, Guy G; Lad, Eleonora M; Cousins, Scott W; Chen, Nan-Kuei; Allen, Kala; Maciejewski, Abigail J; Fernandez, Xuan Duong; Diaz, Michele T; Whitson, Heather EAge-related macular degeneration (AMD) is a common retina disease associated with cognitive impairment in older adults. The mechanism(s) that account for the link between AMD and cognitive decline remain unclear. Here we aim to shed light on this issue by investigating whether relationships between cognition and white matter in the brain differ by AMD status. In a direct group comparison of brain connectometry maps from diffusion weighted images, AMD patients showed significantly weaker quantitative anisotropy (QA) than healthy controls, predominantly in the splenium and left optic radiation. The QA of these tracts, however, did not correlate with the visual acuity measure, indicating that this group effect is not directly driven by visual loss. The AMD and control groups did not differ significantly in cognitive performance.Across all participants, better cognitive performance (e.g. verbal fluency) is associated with stronger connectivity strength in white matter tracts including the splenium and the left inferior fronto-occipital fasciculus/inferior longitudinal fasciculus. However, there were significant interactions between group and cognitive performance (verbal fluency, memory), suggesting that the relation between QA and cognitive performance was weaker in AMD patients than in controls.This may be explained by unmeasured determinants of performance that are more common or impactful in AMD or by a recruitment bias whereby the AMD group had higher cognitive reserve. In general, our findings suggest that neural degeneration in the brain might occur in parallel to AMD in the eyes, although the participants studied here do not (yet) exhibit overt cognitive declines per standard assessments.Item Open Access Cooperative contributions of structural and functional connectivity to successful memory in aging.(Network neuroscience (Cambridge, Mass.), 2019-01) Davis, Simon W; Szymanski, Amanda; Boms, Homa; Fink, Thomas; Cabeza, RobertoUnderstanding the precise relation between functional connectivity and structural (white matter) connectivity and how these relationships account for cognitive changes in older adults are major challenges for neuroscience. We investigate these issues using an approach in which structural equation modeling (SEM) is employed to integrate functional and structural connectivity data from younger and older adults (n = 62), analyzed with a common framework based on regions connected by canonical tract groups (CTGs). CTGs (e.g., uncinate fasciculus) serve as a common currency between functional and structural connectivity matrices, and ensure equivalent sparsity in connectome information. We used this approach to investigate the neural mechanisms supporting memory for items and memory for associations, and how they are affected by healthy aging. We found that different structural and functional CTGs made independent contributions to source and item memory performance, suggesting that both forms of connectivity underlie age-related differences in specific forms of memory. Furthermore, the relationship between functional and structural connectivity was best explained by a general relationship between latent constructs-a relationship absent in any specific CTG group. These results provide insights into the relationship between structural and functional connectivity patterns, and elucidate their relative contribution to age-related differences in source memory performance.Item Open Access Cross-hemispheric collaboration and segregation associated with task difficulty as revealed by structural and functional connectivity.(J Neurosci, 2015-05-27) Davis, Simon W; Cabeza, RobertoAlthough it is known that brain regions in one hemisphere may interact very closely with their corresponding contralateral regions (collaboration) or operate relatively independent of them (segregation), the specific brain regions (where) and conditions (how) associated with collaboration or segregation are largely unknown. We investigated these issues using a split field-matching task in which participants matched the meaning of words or the visual features of faces presented to the same (unilateral) or to different (bilateral) visual fields. Matching difficulty was manipulated by varying the semantic similarity of words or the visual similarity of faces. We assessed the white matter using the fractional anisotropy (FA) measure provided by diffusion tensor imaging (DTI) and cross-hemispheric communication in terms of fMRI-based connectivity between homotopic pairs of cortical regions. For both perceptual and semantic matching, bilateral trials became faster than unilateral trials as difficulty increased (bilateral processing advantage, BPA). The study yielded three novel findings. First, whereas FA in anterior corpus callosum (genu) correlated with word-matching BPA, FA in posterior corpus callosum (splenium-occipital) correlated with face-matching BPA. Second, as matching difficulty intensified, cross-hemispheric functional connectivity (CFC) increased in domain-general frontopolar cortex (for both word and face matching) but decreased in domain-specific ventral temporal lobe regions (temporal pole for word matching and fusiform gyrus for face matching). Last, a mediation analysis linking DTI and fMRI data showed that CFC mediated the effect of callosal FA on BPA. These findings clarify the mechanisms by which the hemispheres interact to perform complex cognitive tasks.Item Open Access Distinct aspects of frontal lobe structure mediate age-related differences in fluid intelligence and multitasking(Nature Communications, 2014-12-18) Kievit, Rogier A; Davis, Simon W; Mitchell, Daniel J; Taylor, Jason R; Duncan, John; Cam-CAN Research Team; Henson, Richard NA; Cam-CAN Research TeamItem Open Access Effects of online repetitive transcranial magnetic stimulation (rTMS) on cognitive processing: A meta-analysis and recommendations for future studies.(Neuroscience and biobehavioral reviews, 2019-12) Beynel, Lysianne; Appelbaum, Lawrence G; Luber, Bruce; Crowell, Courtney A; Hilbig, Susan A; Lim, Wesley; Nguyen, Duy; Chrapliwy, Nicolas A; Davis, Simon W; Cabeza, Roberto; Lisanby, Sarah H; Deng, Zhi-DeOnline repetitive transcranial magnetic stimulation (rTMS), applied while subjects are performing a task, is widely used to disrupt brain regions underlying cognition. However, online rTMS has also induced "paradoxical enhancement". Given the rapid proliferation of this approach, it is crucial to develop a better understanding of how online stimulation influences cognition, and the optimal parameters to achieve desired effects. To accomplish this goal, a quantitative meta-analysis was performed with random-effects models fitted to reaction time (RT) and accuracy data. The final dataset included 126 studies published between 1998 and 2016, with 244 total effects for reaction times, and 202 for accuracy. Meta-analytically, rTMS at 10 Hz and 20 Hz disrupted accuracy for attention, executive, language, memory, motor, and perception domains, while no effects were found with 1 Hz or 5 Hz. Stimulation applied at and 10 and 20 Hz slowed down RTs in attention and perception tasks. No performance enhancement was found. Meta-regression analysis showed that fMRI-guided targeting and short inter-trial intervals are associated with increased disruptive effects with rTMS.Item Open Access Examining the Role of Lateral Parietal Cortex in Emotional Distancing Using TMS.(Cognitive, affective & behavioral neuroscience, 2020-10) Powers, John P; Davis, Simon W; Neacsiu, Andrada D; Beynel, Lysianne; Appelbaum, Lawrence G; LaBar, Kevin SWe recently proposed a neurocognitive model of distancing-an emotion regulation tactic-with a focus on the lateral parietal cortex. Although this brain area has been implicated in both cognitive control and self-projection processes during distancing, fMRI work suggests that these processes may be dissociable here. This preregistered (NCT03698591) study tested the contribution of left temporoparietal junction (TPJ) to distancing using repetitive transcranial magnetic stimulation. We hypothesized that inhibiting left TPJ would decrease the efficiency of distancing but not distraction, another regulation tactic with similar cognitive control requirements, thus implicating this region in the self-projection processes unique to distancing. Active and sham continuous theta burst stimulation (cTBS) were applied to 30 healthy adults in a single-session crossover design. Tactic efficiency was measured using online reports of valence and effort. The stimulation target was established from the group TPJ fMRI activation peak in an independent sample using the same distancing task, and anatomical MRI scans were used for individual targeting. Analyses employed both repeated-measures ANOVA and analytic procedures tailored to crossover designs. Irrespective of cTBS, distancing led to greater decreases in negative valence over time relative to distraction, and distancing effort decreased over time while distraction effort remained stable. Exploratory analyses also revealed that active cTBS made distancing more effortful, but not distraction. Thus, left TPJ seems to support self-projection processes in distancing, and these processes may be facilitated by repeated use. These findings help to clarify the role of lateral parietal cortex in distancing and inform applications of distancing and distraction.Item Open Access Intensity- and timing-dependent modulation of motion perception with transcranial magnetic stimulation of visual cortex.(Neuropsychologia, 2020-10) Gamboa Arana, Olga Lucia; Palmer, Hannah; Dannhauer, Moritz; Hile, Connor; Liu, Sicong; Hamdan, Rena; Brito, Alexandra; Cabeza, Roberto; Davis, Simon W; Peterchev, Angel V; Sommer, Marc A; Appelbaum, Lawrence GDespite the widespread use of transcranial magnetic stimulation (TMS) in research and clinical care, the dose-response relations and neurophysiological correlates of modulatory effects remain relatively unexplored. To fill this gap, we studied modulation of visual processing as a function of TMS parameters. Our approach combined electroencephalography (EEG) with application of single pulse TMS to visual cortex as participants performed a motion perception task. During each participants' first visit, motion coherence thresholds, 64-channel visual evoked potentials (VEPs), and TMS resting motor thresholds (RMT) were measured. In second and third visits, single pulse TMS was delivered at one of two latencies, either 30 ms before the onset of motion or at the onset latency of the N2 VEP component derived from the first session. TMS was delivered at 0%, 80%, 100%, or 120% of RMT over the site of N2 peak activity, or at 120% over vertex. Behavioral results demonstrated a significant main effect of TMS timing on accuracy, with better performance when TMS was applied at the N2-Onset timing versus Pre-Onset, as well as a significant interaction, indicating that 80% intensity produced higher accuracy than other conditions at the N2-Onset. TMS effects on the P3 VEP showed reduced amplitudes in the 80% Pre-Onset condition, an increase for the 120% N2-Onset condition, and monotonic amplitude scaling with stimulation intensity. The N2 component was not affected by TMS. These findings reveal the influence of TMS intensity and timing on visual perception and electrophysiological responses, with optimal facilitation at stimulation intensities below RMT.Item Open Access Inter-Parietal White Matter Development Predicts Numerical Performance in Young Children.(Learn Individ Differ, 2011-12) Cantlon, Jessica F; Davis, Simon W; Libertus, Melissa E; Kahane, Jill; Brannon, Elizabeth M; Pelphrey, Kevin AIn an effort to understand the role of interhemispheric transfer in numerical development, we investigated the relationship between children's developing knowledge of numbers and the integrity of their white matter connections between the cerebral hemispheres (the corpus callosum). We used diffusion tensor imaging (DTI) tractography analyses to test the link between the development of the corpus callosum and performance on symbolic and non-symbolic numerical judgment tasks. We were especially interested in the interhemispheric connections of parietal cortex in 6-year-old children, because regions of parietal cortex have been implicated in the development of numerical skills by several prior studies. Our results revealed significant structural differences between children and adults in the fibers of the corpus callosum connecting the left and right parietal lobes. Importantly, these structural differences were predictive of individual differences among children in performance on numerical judgment tasks: children with poor numerical performance relative to their peers exhibited reduced white matter coherence in the fibers passing through the isthmus of the corpus callosum, which connects the parietal hemispheres.Item Open Access Less wiring, more firing: low-performing older adults compensate for impaired white matter with greater neural activity.(Cereb Cortex, 2015-04) Daselaar, Sander M; Iyengar, Vijeth; Davis, Simon W; Eklund, Karl; Hayes, Scott M; Cabeza, Roberto EThe reliable neuroimaging finding that older adults often show greater activity (over-recruitment) than younger adults is typically attributed to compensation. Yet, the neural mechanisms of over-recruitment in older adults (OAs) are largely unknown. Rodent electrophysiology studies have shown that as number of afferent fibers within a circuit decreases with age, the fibers that remain show higher synaptic field potentials (less wiring, more firing). Extrapolating to system-level measures in humans, we proposed and tested the hypothesis that greater activity in OAs compensates for impaired white-matter connectivity. Using a neuropsychological test battery, we measured individual differences in executive functions associated with the prefrontal cortex (PFC) and memory functions associated with the medial temporal lobes (MTLs). Using event-related functional magnetic resonance imaging, we compared activity for successful versus unsuccessful trials during a source memory task. Finally, we measured white-matter integrity using diffusion tensor imaging. The study yielded 3 main findings. First, low-executive OAs showed greater success-related activity in the PFC, whereas low-memory OAs showed greater success-related activity in the MTLs. Second, low-executive OAs displayed white-matter deficits in the PFC, whereas low-memory OAs displayed white-matter deficits in the MTLs. Finally, in both prefrontal and MTL regions, white-matter decline and success-related activations occurred in close proximity and were negatively correlated. This finding supports the less-wiring-more-firing hypothesis, which provides a testable account of compensatory over-recruitment in OAs.Item Open Access Multiple determinants of lifespan memory differences(Scientific Reports, 2016-09-07) Henson, Richard N; Campbell, Karen L; Davis, Simon W; Taylor, Jason R; Emery, Tina; Erzinclioglu, Sharon; Cam-CAN; Kievit, Rogier A© The Author(s) 2016.Memory problems are among the most common complaints as people grow older. Using structural equation modeling of commensurate scores of anterograde memory from a large (N = 315), population-derived sample (www.cam-can.org), we provide evidence for three memory factors that are supported by distinct brain regions and show differential sensitivity to age. Associative memory and item memory are dramatically affected by age, even after adjusting for education level and fluid intelligence, whereas visual priming is not. Associative memory and item memory are differentially affected by emotional valence, and the age-related decline in associative memory is faster for negative than for positive or neutral stimuli. Gray-matter volume in the hippocampus, parahippocampus and fusiform cortex, and a white-matter index for the fornix, uncinate fasciculus and inferior longitudinal fasciculus, show differential contributions to the three memory factors. Together, these data demonstrate the extent to which differential ageing of the brain leads to differential patterns of memory loss.Item Open Access Network-level dynamics underlying a combined rTMS and psychotherapy treatment for major depressive disorder: An exploratory network analysis.(International journal of clinical and health psychology : IJCHP, 2023-10) Davis, Simon W; Beynel, Lysianne; Neacsiu, Andrada D; Luber, Bruce M; Bernhardt, Elisabeth; Lisanby, Sarah H; Strauman, Timothy JBackground
Despite the growing use of repetitive transcranial magnetic stimulation (rTMS) as a treatment for depression, there is a limited understanding of the mechanisms of action and how potential treatment-related brain changes help to characterize treatment response. To address this gap in understanding we investigated the effects of an approach combining rTMS with simultaneous psychotherapy on global functional connectivity.Method
We compared task-related functional connectomes based on an idiographic goal priming task tied to emotional regulation acquired before and after simultaneous rTMS/psychotherapy treatment for patients with major depressive disorders and compared these changes to normative connectivity patterns from a set of healthy volunteers (HV) performing the same task.Results
At baseline, compared to HVs, patients demonstrated hyperconnectivity of the DMN, cerebellum and limbic system, and hypoconnectivity of the fronto-parietal dorsal-attention network and visual cortex. Simultaneous rTMS/psychotherapy helped to normalize these differences, which were reduced after treatment. This finding suggests that the rTMS/therapy treatment regularizes connectivity patterns in both hyperactive and hypoactive brain networks.Conclusions
These results help to link treatment to a comprehensive model of the neurocircuitry underlying depression and pave the way for future studies using network-guided principles to significantly improve rTMS efficacy for depression.Item Open Access On the Concurrent Use of Self-System Therapy and Functional Magnetic Resonance Imaging-Guided Transcranial Magnetic Stimulation as Treatment for Depression.(The journal of ECT, 2018-12) Neacsiu, Andrada D; Luber, Bruce M; Davis, Simon W; Bernhardt, Elisabeth; Strauman, Timothy J; Lisanby, Sarah HObjectives
Despite the growing use of repetitive transcranial magnetic stimulation (rTMS) as a treatment for unipolar depression, its typical effect sizes have been modest, and methodological and conceptual challenges remain regarding how to optimize its efficacy. Linking rTMS to a model of the neurocircuitry underlying depression and applying such a model to personalize the site of stimulation may improve the efficacy of rTMS. Recent developments in the psychology and neurobiology of self-regulation offer a conceptual framework for identifying mechanisms of action in rTMS for depression, as well as for developing guidelines for individualized rTMS treatment. We applied this framework to develop a multimodal treatment for depression by pairing self-system therapy (SST) with simultaneously administered rTMS delivered to an individually targeted region of dorsolateral prefrontal cortex identified via functional magnetic resonance imaging (fMRI).Methods
In this proof-of-concept study, we examined the acceptability, feasibility, and preliminary efficacy of combining individually fMRI-targeted rTMS with SST. Using the format of a cognitive paired associative stimulation paradigm, the treatment was administered to 5 adults with unipolar depression in an open-label trial.Results
The rTMS/SST combination was well tolerated, feasible, and acceptable. Preliminary evidence of efficacy also was promising. We hypothesized that both treatment modalities were targeting the same neural circuitry through cognitive paired associative stimulation, and observed changes in task-based fMRI were consistent with our model. These neural changes were directly related to improvements in depression severity.Conclusions
The new combination treatment represents a promising exemplar for theory-based, individually targeted, multimodal intervention in mood disorders.Item Open Access Resting-state networks do not determine cognitive function networks: a commentary on Campbell and Schacter (2016)(Language, Cognition and Neuroscience, 2016-11-08) Davis, Simon W; Stanley, Matthew L; Moscovitch, Morris; Cabeza, RobertoItem Open Access Robust resilience of the frontotemporal syntax system to aging(Journal of Neuroscience, 2016-05-11) Campbell, Karen L; Samu, Dávid; Davis, Simon W; Geerligs, Linda; Mustafa, Abdur; Tyler, Lorraine K; for Cambridge Centre for Aging and Neuroscience© 2016 the authors.Brain function is thought to become less specialized with age. However, this view is largely based on findings of increased activation during tasks that fail to separate task-related processes (e.g., attention, decision making) from the cognitive process under examination. Here we take a systems-level approach to separate processes specific to language comprehension from those related to general task demands and to examine age differences in functional connectivity both within and between those systems. A large population-based sample (Nβ111; 22– 87 years) from the Cambridge Centre for Aging and Neuroscience (Cam-CAN) was scanned using functional MRI during two versions of an experiment: a natural listening version in which participants simply listened to spoken sentences and an explicit task version in which they rated the acceptability of the same sentences. Independent components analysis across the combined data from both versions showed that although task-free language comprehension activates only the auditory and frontotemporal (FTN) syntax networks, performing a simple task with the same sentences recruits several additional networks. Remarkably, functionality of the critical FTN is maintained across age groups, showing no difference in within-network connectivity or responsivity to syntactic processing demands despite gray matter loss and reduced connectivity to task-related networks.Wefound no evidence for reduced specialization or compensation with age. Overt task performance was maintained across the lifespan and performance in older, but not younger, adults related to crystallized knowledge, suggesting that decreased between-network connectivity may be compensated for by older adults’ richer knowledge base.