Browsing by Author "DeMarco, C Todd"
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item Open Access Breadth of SARS-CoV-2 Neutralization and Protection Induced by a Nanoparticle VaccineLi, Dapeng; Martinez, David R; Martinez, David R; Schäfer, Alexandra; Chen, Haiyan; Barr, Maggie; Sutherland, Laura L; Lee, Esther; Parks, Robert; Mielke, Dieter; Edwards, Whitney; Newman, Amanda; Bock, Kevin W; Minai, Mahnaz; Nagata, Bianca M; Gagne, Matthew; Douek, Daniel C; DeMarco, C Todd; Denny, Thomas N; Oguin, Thomas H; Brown, Alecia; Rountree, Wes; Wang, Yunfei; Mansouri, Katayoun; Edwards, Robert J; Ferrari, Guido; Sempowski, Gregory D; Eaton, Amanda; Tang, Juanjie; Cain, Derek W; Santra, Sampa; Pardi, Norbert; Weissman, Drew; Tomai, Mark A; Fox, Christopher B; Moore, Ian N; Andersen, Hanne; Lewis, Mark G; Golding, Hana; Seder, Robert; Khurana, Surender; Baric, Ralph S; Montefiori, David C; Saunders, Kevin O; Haynes, Barton FItem Open Access Breadth of SARS-CoV-2 Neutralization and Protection Induced by a Nanoparticle Vaccine.(bioRxiv, 2022-02-14) Li, Dapeng; Martinez, David R; Schäfer, Alexandra; Chen, Haiyan; Barr, Maggie; Sutherland, Laura L; Lee, Esther; Parks, Robert; Mielke, Dieter; Edwards, Whitney; Newman, Amanda; Bock, Kevin W; Minai, Mahnaz; Nagata, Bianca M; Gagne, Matthew; Douek, Daniel C; DeMarco, C Todd; Denny, Thomas N; Oguin, Thomas H; Brown, Alecia; Rountree, Wes; Wang, Yunfei; Mansouri, Katayoun; Edwards, Robert J; Ferrari, Guido; Sempowski, Gregory D; Eaton, Amanda; Tang, Juanjie; Cain, Derek W; Santra, Sampa; Pardi, Norbert; Weissman, Drew; Tomai, Mark A; Fox, Christopher B; Moore, Ian N; Andersen, Hanne; Lewis, Mark G; Golding, Hana; Seder, Robert; Khurana, Surender; Baric, Ralph S; Montefiori, David C; Saunders, Kevin O; Haynes, Barton FCoronavirus vaccines that are highly effective against SARS-CoV-2 variants are needed to control the current pandemic. We previously reported a receptor-binding domain (RBD) sortase A-conjugated ferritin nanoparticle (RBD-scNP) vaccine that induced neutralizing antibodies against SARS-CoV-2 and pre-emergent sarbecoviruses and protected monkeys from SARS-CoV-2 WA-1 infection. Here, we demonstrate SARS-CoV-2 RBD-scNP immunization induces potent neutralizing antibodies in non-human primates (NHPs) against all eight SARS-CoV-2 variants tested including the Beta, Delta, and Omicron variants. The Omicron variant was neutralized by RBD-scNP-induced serum antibodies with a mean of 10.6-fold reduction of ID50 titers compared to SARS-CoV-2 D614G. Immunization with RBD-scNPs protected NHPs from SARS-CoV-2 WA-1, Beta, and Delta variant challenge, and protected mice from challenges of SARS-CoV-2 Beta variant and two other heterologous sarbecoviruses. These results demonstrate the ability of RBD-scNPs to induce broad neutralization of SARS-CoV-2 variants and to protect NHPs and mice from multiple different SARS-related viruses. Such a vaccine could provide the needed immunity to slow the spread of and reduce disease caused by SARS-CoV-2 variants such as Delta and Omicron.Item Open Access Development of a contemporary globally diverse HIV viral panel by the EQAPOL program.(J Immunol Methods, 2014-07) Sanchez, Ana M; DeMarco, C Todd; Hora, Bhavna; Keinonen, Sarah; Chen, Yue; Brinkley, Christie; Stone, Mars; Tobler, Leslie; Keating, Sheila; Schito, Marco; Busch, Michael P; Gao, Feng; Denny, Thomas NThe significant diversity among HIV-1 variants poses serious challenges for vaccine development and for developing sensitive assays for screening, surveillance, diagnosis, and clinical management. Recognizing a need to develop a panel of HIV representing the current genetic and geographic diversity NIH/NIAID contracted the External Quality Assurance Program Oversight Laboratory (EQAPOL) to isolate, characterize and establish panels of HIV-1 strains representing global diverse subtypes and circulating recombinant forms (CRFs), and to make them available to the research community. HIV-positive plasma specimens and previously established isolates were collected through a variety of collaborations with a preference for samples from acutely/recently infected persons. Source specimens were cultured to high-titer/high-volume using well-characterized cryopreserved PBMCs from National y donors. Panel samples were stored as neat culture supernatant or diluted into defibrinated plasma. Characterization for the final expanded virus stocks included viral load, p24 antigen, infectivity (TCID), sterility, coreceptor usage, and near full-length genome sequencing. Viruses are made available to approved, interested laboratories using an online ordering application. The current EQAPOL Viral Diversity panel includes 100 viral specimens representing 6 subtypes (A, B, C, D, F, and G), 2 sub-subtypes (F1 and F2), 7 CRFs (01, 02, 04, 14, 22, 24, and 47), 19 URFs and 3 group O viruses from 22 countries. The EQAPOL Viral Diversity panel is an invaluable collection of well-characterized reagents that are available to the scientific community, including researchers, epidemiologists, and commercial manufacturers of diagnostics and pharmaceuticals to support HIV research, as well as diagnostic and vaccine development.Item Open Access Exosomes decorated with a recombinant SARS-CoV-2 receptor-binding domain as an inhalable COVID-19 vaccine.(Nature biomedical engineering, 2022-07-04) Wang, Zhenzhen; Popowski, Kristen D; Zhu, Dashuai; de Juan Abad, Blanca López; Wang, Xianyun; Liu, Mengrui; Lutz, Halle; De Naeyer, Nicole; DeMarco, C Todd; Denny, Thomas N; Dinh, Phuong-Uyen C; Li, Zhenhua; Cheng, KeThe first two mRNA vaccines against infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that were approved by regulators require a cold chain and were designed to elicit systemic immunity via intramuscular injection. Here we report the design and preclinical testing of an inhalable virus-like-particle as a COVID-19 vaccine that, after lyophilisation, is stable at room temperature for over three months. The vaccine consists of a recombinant SARS-CoV-2 receptor-binding domain (RBD) conjugated to lung-derived exosomes which, with respect to liposomes, enhance the retention of the RBD in both the mucus-lined respiratory airway and in lung parenchyma. In mice, the vaccine elicited RBD-specific IgG antibodies, mucosal IgA responses and CD4+ and CD8+ T cells with a Th1-like cytokine expression profile in the animals' lungs, and cleared them of SARS-CoV-2 pseudovirus after a challenge. In hamsters, two doses of the vaccine attenuated severe pneumonia and reduced inflammatory infiltrates after a challenge with live SARS-CoV-2. Inhalable and room-temperature-stable virus-like particles may become promising vaccine candidates.Item Open Access Implementation of a Pooled Surveillance Testing Program for Asymptomatic SARS-CoV-2 Infections on a College Campus - Duke University, Durham, North Carolina, August 2-October 11, 2020.(MMWR. Morbidity and mortality weekly report, 2020-11-20) Denny, Thomas N; Andrews, Laura; Bonsignori, Mattia; Cavanaugh, Kyle; Datto, Michael B; Deckard, Anastasia; DeMarco, C Todd; DeNaeyer, Nicole; Epling, Carol A; Gurley, Thaddeus; Haase, Steven B; Hallberg, Chloe; Harer, John; Kneifel, Charles L; Lee, Mark J; Louzao, Raul; Moody, M Anthony; Moore, Zack; Polage, Christopher R; Puglin, Jamie; Spotts, P Hunter; Vaughn, John A; Wolfe, Cameron ROn university campuses and in similar congregate environments, surveillance testing of asymptomatic persons is a critical strategy (1,2) for preventing transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). All students at Duke University, a private research university in Durham, North Carolina, signed the Duke Compact (3), agreeing to observe mandatory masking, social distancing, and participation in entry and surveillance testing. The university implemented a five-to-one pooled testing program for SARS-CoV-2 using a quantitative, in-house, laboratory-developed, real-time reverse transcription-polymerase chain reaction (RT-PCR) test (4,5). Pooling of specimens to enable large-scale testing while minimizing use of reagents was pioneered during the human immunodeficiency virus pandemic (6). A similar methodology was adapted for Duke University's asymptomatic testing program. The baseline SARS-CoV-2 testing plan was to distribute tests geospatially and temporally across on- and off-campus student populations. By September 20, 2020, asymptomatic testing was scaled up to testing targets, which include testing for residential undergraduates twice weekly, off-campus undergraduates one to two times per week, and graduate students approximately once weekly. In addition, in response to newly identified positive test results, testing was focused in locations or within cohorts where data suggested an increased risk for transmission. Scale-up over 4 weeks entailed redeploying staff members to prepare 15 campus testing sites for specimen collection, developing information management tools, and repurposing laboratory automation to establish an asymptomatic surveillance system. During August 2-October 11, 68,913 specimens from 10,265 graduate and undergraduate students were tested. Eighty-four specimens were positive for SARS-CoV-2, and 51% were among persons with no symptoms. Testing as a result of contact tracing identified 27.4% of infections. A combination of risk-reduction strategies and frequent surveillance testing likely contributed to a prolonged period of low transmission on campus. These findings highlight the importance of combined testing and contact tracing strategies beyond symptomatic testing, in association with other preventive measures. Pooled testing balances resource availability with supply-chain disruptions, high throughput with high sensitivity, and rapid turnaround with an acceptable workload.Item Open Access Lack of B cell dysfunction is associated with functional, gp120-dominant antibody responses in breast milk of simian immunodeficiency virus-infected African green monkeys.(J Virol, 2013-10) Amos, Joshua D; Wilks, Andrew B; Fouda, Genevieve G; Smith, Shannon D; Colvin, Lisa; Mahlokozera, Tatenda; Ho, Carrie; Beck, Krista; Overman, R Glenn; DeMarco, C Todd; Hodge, Terry L; LaBranche, Celia C; Montefiori, David C; Denny, Thomas N; Liao, Hua-Xin; Tomaras, Georgia D; Moody, M Anthony; Permar, Sallie RThe design of an effective vaccine to reduce the incidence of mother-to-child transmission (MTCT) of human immunodeficiency virus (HIV) via breastfeeding will require identification of protective immune responses that block postnatal virus acquisition. Natural hosts of simian immunodeficiency virus (SIV) sustain nonpathogenic infection and rarely transmit the virus to their infants despite high milk virus RNA loads. This is in contrast to HIV-infected women and SIV-infected rhesus macaques (RhMs), nonnatural hosts which exhibit higher rates of postnatal virus transmission. In this study, we compared the systemic and mucosal B cell responses of lactating, SIV-infected African green monkeys (AGMs), a natural host species, to that of SIV-infected RhMs and HIV-infected women. AGMs did not demonstrate hypergammaglobulinemia or accumulate circulating memory B cells during chronic SIV infection. Moreover, the milk of SIV-infected AGMs contained higher proportions of naive B cells than RhMs. Interestingly, AGMs exhibited robust milk and plasma Env binding antibody responses that were one to two logs higher than those in RhMs and humans and demonstrated autologous neutralizing responses in milk at 1 year postinfection. Furthermore, the plasma and milk Env gp120-binding antibody responses were equivalent to or predominant over Env gp140-binding antibody responses in AGMs, in contrast to that in RhMs and humans. The strong gp120-specific, functional antibody responses in the milk of SIV-infected AGMs may contribute to the rarity of postnatal transmission observed in natural SIV hosts.Item Open Access Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses.(Nature, 2021-06) Saunders, Kevin O; Lee, Esther; Parks, Robert; Martinez, David R; Li, Dapeng; Chen, Haiyan; Edwards, Robert J; Gobeil, Sophie; Barr, Maggie; Mansouri, Katayoun; Alam, S Munir; Sutherland, Laura L; Cai, Fangping; Sanzone, Aja M; Berry, Madison; Manne, Kartik; Bock, Kevin W; Minai, Mahnaz; Nagata, Bianca M; Kapingidza, Anyway B; Azoitei, Mihai; Tse, Longping V; Scobey, Trevor D; Spreng, Rachel L; Rountree, R Wes; DeMarco, C Todd; Denny, Thomas N; Woods, Christopher W; Petzold, Elizabeth W; Tang, Juanjie; Oguin, Thomas H; Sempowski, Gregory D; Gagne, Matthew; Douek, Daniel C; Tomai, Mark A; Fox, Christopher B; Seder, Robert; Wiehe, Kevin; Weissman, Drew; Pardi, Norbert; Golding, Hana; Khurana, Surender; Acharya, Priyamvada; Andersen, Hanne; Lewis, Mark G; Moore, Ian N; Montefiori, David C; Baric, Ralph S; Haynes, Barton FBetacoronaviruses caused the outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome, as well as the current pandemic of SARS coronavirus 2 (SARS-CoV-2)1-4. Vaccines that elicit protective immunity against SARS-CoV-2 and betacoronaviruses that circulate in animals have the potential to prevent future pandemics. Here we show that the immunization of macaques with nanoparticles conjugated with the receptor-binding domain of SARS-CoV-2, and adjuvanted with 3M-052 and alum, elicits cross-neutralizing antibody responses against bat coronaviruses, SARS-CoV and SARS-CoV-2 (including the B.1.1.7, P.1 and B.1.351 variants). Vaccination of macaques with these nanoparticles resulted in a 50% inhibitory reciprocal serum dilution (ID50) neutralization titre of 47,216 (geometric mean) for SARS-CoV-2, as well as in protection against SARS-CoV-2 in the upper and lower respiratory tracts. Nucleoside-modified mRNAs that encode a stabilized transmembrane spike or monomeric receptor-binding domain also induced cross-neutralizing antibody responses against SARS-CoV and bat coronaviruses, albeit at lower titres than achieved with the nanoparticles. These results demonstrate that current mRNA-based vaccines may provide some protection from future outbreaks of zoonotic betacoronaviruses, and provide a multimeric protein platform for the further development of vaccines against multiple (or all) betacoronaviruses.Item Open Access SARS-CoV-2 Infections Among Children in the Biospecimens from Respiratory Virus-Exposed Kids (BRAVE Kids) Study.(Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2020-11-03) Hurst, Jillian H; Heston, Sarah M; Chambers, Hailey N; Cunningham, Hannah M; Price, Meghan J; Suarez, Lilianna; Crew, Carter G; Bose, Shree; Aquino, Jhoanna N; Carr, Stuart T; Griffin, S Michelle; Smith, Stephanie H; Jenkins, Kirsten; Pfeiffer, Trevor S; Rodriguez, Javier; DeMarco, C Todd; De Naeyer, Nicole A; Gurley, Thaddeus C; Louzao, Raul; Zhao, Congwen; Cunningham, Coleen K; Steinbach, William J; Denny, Thomas N; Lugo, Debra J; Moody, M Anthony; Permar, Sallie R; Rotta, Alexandre T; Turner, Nicholas A; Walter, Emmanuel B; Woods, Christopher W; Kelly, Matthew SBACKGROUND:Children with SARS-CoV-2 infection typically have mild symptoms that do not require medical attention, leaving a gap in our understanding of the spectrum of illnesses that the virus causes in children. METHODS:We conducted a prospective cohort study of children and adolescents (<21 years of age) with a SARS-CoV-2-infected close contact. We collected nasopharyngeal or nasal swabs at enrollment and tested for SARS-CoV-2 using a real-time PCR assay. RESULTS:Of 382 children, 293 (77%) were SARS-CoV-2-infected. SARS-CoV-2-infected children were more likely to be Hispanic (p<0.0001), less likely to have asthma (p=0.005), and more likely to have an infected sibling contact (p=0.001) than uninfected children. Children ages 6-13 years were frequently asymptomatic (39%) and had respiratory symptoms less often than younger children (29% vs. 48%; p=0.01) or adolescents (29% vs. 60%; p<0.0001). Compared to children ages 6-13 years, adolescents more frequently reported influenza-like (61% vs. 39%; p<0.0001), gastrointestinal (27% vs. 9%; p=0.002), and sensory symptoms (42% vs. 9%; p<0.0001), and had more prolonged illnesses [median (IQR) duration: 7 (4, 12) vs. 4 (3, 8) days; p=0.01]. Despite the age-related variability in symptoms, we found no differences in nasopharyngeal viral load by age or between symptomatic and asymptomatic children. CONCLUSIONS:Hispanic ethnicity and an infected sibling close contact are associated with increased SARS-CoV-2 infection risk among children, while asthma is associated with decreased risk. Age-related differences in the clinical manifestations of SARS-CoV-2 infection must be considered when evaluating children for COVID-19 and in developing screening strategies for schools and childcare settings.Item Open Access SARS-CoV-2 Infections Among Children in the Biospecimens from Respiratory Virus-Exposed Kids (BRAVE Kids) Study.(medRxiv, 2020-09-01) Hurst, Jillian H; Heston, Sarah M; Chambers, Hailey N; Cunningham, Hannah M; Price, Meghan J; Suarez, Liliana; Crew, Carter G; Bose, Shree; Aquino, Jhoanna N; Carr, Stuart T; Griffin, S Michelle; Smith, Stephanie H; Jenkins, Kirsten; Pfeiffer, Trevor S; Rodriguez, Javier; DeMarco, C Todd; De Naeyer, Nicole A; Gurley, Thaddeus C; Louzao, Raul; Cunningham, Coleen K; Steinbach, William J; Denny, Thomas N; Lugo, Debra J; Moody, M Anthony; Permar, Sallie R; Rotta, Alexandre T; Turner, Nicholas A; Walter, Emmanuel B; Woods, Christopher W; Kelly, Matthew SBACKGROUND: Children with SARS-CoV-2 infection typically have mild symptoms that do not require medical attention, leaving a gap in our understanding of the spectrum of illnesses that the virus causes in children. METHODS: We conducted a prospective cohort study of children and adolescents (<21 years of age) with a SARS-CoV-2-infected close contact. We collected nasopharyngeal or nasal swabs at enrollment and tested for SARS-CoV-2 using a real-time PCR assay. RESULTS: Of 382 children, 289 (76%) were SARS-CoV-2-infected. SARS-CoV-2-infected children were more likely to be Hispanic (p<0.0001), less likely to have a history of asthma (p=0.009), and more likely to have an infected sibling contact (p=0.0007) than uninfected children. Children ages 6-13 years were frequently asymptomatic (38%) and had respiratory symptoms less often than younger children (30% vs. 49%; p=0.008) or adolescents (30% vs. 59%; p<0.0001). Compared to children ages 6-13 years, adolescents more frequently reported influenza-like (61% vs. 39%; p=0.002), gastrointestinal (26% vs. 9%; p=0.003), and sensory symptoms (43% vs. 9%; p<0.0001), and had more prolonged illnesses [median (IQR) duration: 7 (4, 12) vs. 4 (3, 8) days; p=0.004]. Despite the age-related variability in symptoms, we found no differences in nasopharyngeal viral load by age or between symptomatic and asymptomatic children. CONCLUSIONS: Hispanic ethnicity and an infected sibling close contact are associated with increased SARS-CoV-2 infection risk among children, while a history of asthma is associated with decreased risk. Age-related differences in the clinical manifestations of SARS-CoV-2 infection must be considered when evaluating children for COVID-19 and in developing screening strategies for schools and childcare settings.Item Open Access SARS-CoV-2 vaccination induces neutralizing antibodies against pandemic and pre-emergent SARS-related coronaviruses in monkeys.(bioRxiv, 2021-02-17) Saunders, Kevin O; Lee, Esther; Parks, Robert; Martinez, David R; Li, Dapeng; Chen, Haiyan; Edwards, Robert J; Gobeil, Sophie; Barr, Maggie; Mansouri, Katayoun; Alam, S Munir; Sutherland, Laura L; Cai, Fangping; Sanzone, Aja M; Berry, Madison; Manne, Kartik; Kapingidza, Anyway B; Azoitei, Mihai; Tse, Longping V; Scobey, Trevor D; Spreng, Rachel L; Rountree, R Wes; DeMarco, C Todd; Denny, Thomas N; Woods, Christopher W; Petzold, Elizabeth W; Oguin, Thomas H; Sempowski, Gregory D; Gagne, Matthew; Douek, Daniel C; Tomai, Mark A; Fox, Christopher B; Seder, Robert; Wiehe, Kevin; Weissman, Drew; Pardi, Norbert; Acharya, Priyamvada; Andersen, Hanne; Lewis, Mark G; Moore, Ian N; Montefiori, David C; Baric, Ralph S; Haynes, Barton FBetacoronaviruses (betaCoVs) caused the severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS) outbreaks, and now the SARS-CoV-2 pandemic. Vaccines that elicit protective immune responses against SARS-CoV-2 and betaCoVs circulating in animals have the potential to prevent future betaCoV pandemics. Here, we show that immunization of macaques with a multimeric SARS-CoV-2 receptor binding domain (RBD) nanoparticle adjuvanted with 3M-052-Alum elicited cross-neutralizing antibody responses against SARS-CoV-1, SARS-CoV-2, batCoVs and the UK B.1.1.7 SARS-CoV-2 mutant virus. Nanoparticle vaccination resulted in a SARS-CoV-2 reciprocal geometric mean neutralization titer of 47,216, and robust protection against SARS-CoV-2 in macaque upper and lower respiratory tracts. Importantly, nucleoside-modified mRNA encoding a stabilized transmembrane spike or monomeric RBD protein also induced SARS-CoV-1 and batCoV cross-neutralizing antibodies, albeit at lower titers. These results demonstrate current mRNA vaccines may provide some protection from future zoonotic betaCoV outbreaks, and provide a platform for further development of pan-betaCoV nanoparticle vaccines.Item Open Access The functions of SARS-CoV-2 neutralizing and infection-enhancing antibodies in vitro and in mice and nonhuman primates.(bioRxiv, 2021-02-18) Li, Dapeng; Edwards, Robert J; Manne, Kartik; Martinez, David R; Schäfer, Alexandra; Alam, S Munir; Wiehe, Kevin; Lu, Xiaozhi; Parks, Robert; Sutherland, Laura L; Oguin, Thomas H; McDanal, Charlene; Perez, Lautaro G; Mansouri, Katayoun; Gobeil, Sophie MC; Janowska, Katarzyna; Stalls, Victoria; Kopp, Megan; Cai, Fangping; Lee, Esther; Foulger, Andrew; Hernandez, Giovanna E; Sanzone, Aja; Tilahun, Kedamawit; Jiang, Chuancang; Tse, Longping V; Bock, Kevin W; Minai, Mahnaz; Nagata, Bianca M; Cronin, Kenneth; Gee-Lai, Victoria; Deyton, Margaret; Barr, Maggie; Holle, Tarra Von; Macintyre, Andrew N; Stover, Erica; Feldman, Jared; Hauser, Blake M; Caradonna, Timothy M; Scobey, Trevor D; Rountree, Wes; Wang, Yunfei; Moody, M Anthony; Cain, Derek W; DeMarco, C Todd; Denny, ThomasN; Woods, Christopher W; Petzold, Elizabeth W; Schmidt, Aaron G; Teng, I-Ting; Zhou, Tongqing; Kwong, Peter D; Mascola, John R; Graham, Barney S; Moore, Ian N; Seder, Robert; Andersen, Hanne; Lewis, Mark G; Montefiori, David C; Sempowski, Gregory D; Baric, Ralph S; Acharya, Priyamvada; Haynes, Barton F; Saunders, Kevin OSARS-CoV-2 neutralizing antibodies (NAbs) protect against COVID-19. A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated NAbs against the receptor-binding domain (RBD) and the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV-1 infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Select RBD NAbs also demonstrated Fc receptor-γ (FcγR)-mediated enhancement of virus infection in vitro , while five non-neutralizing NTD antibodies mediated FcγR-independent in vitro infection enhancement. However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. Nonetheless, three of 31 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo , increased lung inflammation can occur in SARS-CoV-2 antibody-infused macaques.