Browsing by Author "Demchenko, Ivan T"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Adrenoceptor blockade modifies regional cerebral blood flow responses to hyperbaric hyperoxia: Protection against CNS oxygen toxicity.(Journal of applied physiology (Bethesda, Md. : 1985), 2018-07-19) Gasier, Heath G; Demchenko, Ivan T; Zhilyaev, Sergei Yu; Moskvin, Alexander N; Krivchenko, Alexander I; Piantadosi, Claude AExposure to extreme-hyperbaric oxygen (HBO2), > 5-6 atmospheres absolute (ATA), produces baroreflex impairment, sympathetic hyperactivation, hypertension, tachycardia, and cerebral hyperemia, known as Phase II, culminating in seizures. We hypothesized that attenuation of the effects of high sympathetic outflow would preserve regional cerebral blood flow (rCBF) and protect against HBO2-induced seizures. To explore this possibility, we tested four adrenoceptor antagonists in conscious and anesthetized rats exposed to HBO2 at 5 and 6 ATA, respectively: phentolamine (nonselective α1 and 2), prazosin (selective α1), propranolol (nonselective β1 and 2) and atenolol (selective β1). In conscious rats, 4 drug-doses were administered to rats prior to HBO2 exposures, and seizure latencies were recorded. Drug-doses that provided similar protection against seizures were administered before HBO2 exposures in anesthetized rats to determine the effects of adrenoceptor blockade on mean arterial pressure, heart rate, rCBF and EEG spikes. All four drugs modified cardiovascular and rCBF responses in HBO2 that aligned with epileptiform discharges, but only phentolamine and propranolol effectively increased EEG spike latencies by ~20 and 36 min, respectively. When phentolamine and propranolol were delivered during HBO2 at the onset of phase II, only propranolol led to sustained reductions in heart rate and rCBF, preventing the appearance of epileptiform discharges. The enhanced effectiveness of propranolol may extend beyond β-adrenoceptor blockade, i.e. membrane stability and reduced metabolic activity. These results indicate that adrenoceptor drug pre-treatment will minimize the effects of excessive sympathetic outflow on rCBF and extend HBO2 exposure time.Item Open Access Baroreceptor afferents modulate brain excitation and influence susceptibility to toxic effects of hyperbaric oxygen.(Journal of applied physiology (Bethesda, Md. : 1985), 2014-09) Demchenko, Ivan T; Gasier, Heath G; Zhilyaev, Sergei Yu; Moskvin, Alexander N; Krivchenko, Alexander I; Piantadosi, Claude A; Allen, Barry WUnexplained adjustments in baroreflex sensitivity occur in conjunction with exposures to potentially toxic levels of hyperbaric oxygen. To investigate this, we monitored central nervous system, autonomic and cardiovascular responses in conscious and anesthetized rats exposed to hyperbaric oxygen at 5 and 6 atmospheres absolute, respectively. We observed two contrasting phases associated with time-dependent alterations in the functional state of the arterial baroreflex. The first phase, which conferred protection against potentially neurotoxic doses of oxygen, was concurrent with an increase in baroreflex sensitivity and included decreases in cerebral blood flow, heart rate, cardiac output, and sympathetic drive. The second phase was characterized by baroreflex impairment, cerebral hyperemia, spiking on the electroencephalogram, increased sympathetic drive, parasympatholysis, and pulmonary injury. Complete arterial baroreceptor deafferentation abolished the initial protective response, whereas electrical stimulation of intact arterial baroreceptor afferents prolonged it. We concluded that increased afferent traffic attributable to arterial baroreflex activation delays the development of excessive central excitation and seizures. Baroreflex inactivation or impairment removes this protection, and seizures may follow. Finally, electrical stimulation of intact baroreceptor afferents extends the normal delay in seizure development. These findings reveal that the autonomic nervous system is a powerful determinant of susceptibility to sympathetic hyperactivation and seizures in hyperbaric oxygen and the ensuing neurogenic pulmonary injury.Item Open Access Effects of striatal nitric oxide production on regional cerebral blood flow and seizure development in rats exposed to extreme hyperoxia.(Journal of applied physiology (Bethesda, Md. : 1985), 2015-12) Gasier, Heath G; Demchenko, Ivan T; Allen, Barry W; Piantadosi, Claude AThe endogenous vasodilator and signaling molecule nitric oxide has been implicated in cerebral hyperemia, sympathoexcitation, and seizures induced by hyperbaric oxygen (HBO2) at or above 3 atmospheres absolute (ATA). It is unknown whether these events in the onset of central nervous system oxygen toxicity originate within specific brain structures and whether blood flow is diverted to the brain from peripheral organs with high basal flow, such as the kidney. To explore these questions, total and regional cerebral blood flow (CBF) were measured in brain structures of the central autonomic network in anesthetized rats in HBO2 at 6 ATA. Electroencephalogram (EEG) recordings, cardiovascular hemodynamics, and renal blood flow (RBF) were also monitored. As expected, mean arterial blood pressure and total and regional CBF increased preceding EEG spikes while RBF was unaltered. Of the brain structures examined, the earliest rise in CBF occurred in the striatum, suggesting increased neuronal activation. Continuous unilateral or bilateral striatal infusion of the nitric oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester attenuated CBF responses in that structure, but global EEG discharges persisted and did not differ from controls. Our novel findings indicate that: 1) cerebral hyperemia in extreme HBO2 in rats does not occur at the expense of renal perfusion, highlighting the remarkable autoregulatory capability of the kidney, and 2) in spite of a sentinel increase in striatal blood flow, additional brain structure(s) likely govern the pathogenesis of HBO2-induced seizures because EEG discharge latency was unchanged by local blockade of striatal nitric oxide production and concomitant hyperemia.Item Open Access GAT inhibition preserves cerebral blood flow and reduces oxidant damage to mitochondria in rodents exposed to extreme hyperbaric oxygen.(Frontiers in molecular neuroscience, 2022-01) Demchenko, Ivan T; Suliman, Hagir B; Zhilyaey, Sergey Y; Alekseeva, Olga S; Platonova, Tatyana F; Makowski, Matthew S; Piantadosi, Claude A; Gasier, Heath GOxygen breathing at elevated partial pressures (PO2's) at or more than 3 atmospheres absolute (ATA) causes a reduction in brain γ-aminobutyric acid (GABA) levels that impacts the development of central nervous system oxygen toxicity (CNS-OT). Drugs that increase brain GABA content delay the onset of CNS-OT, but it is unknown if oxidant damage is lessened because brain tissue PO2 remains elevated during hyperbaric oxygen (HBO2) exposures. Experiments were performed in rats and mice to measure brain GABA levels with or without GABA transporter inhibitors (GATs) and its influence on cerebral blood flow, oxidant damage, and aspects of mitochondrial quality control signaling (mitophagy and biogenesis). In rats pretreated with tiagabine (GAT1 inhibitor), the tachycardia, secondary rise in mean arterial blood pressure, and cerebral hyperemia were prevented during HBO2 at 5 and 6 ATA. Tiagabine and the nonselective GAT inhibitor nipecotic acid similarly extended HBO2 seizure latencies. In mice pretreated with tiagabine and exposed to HBO2 at 5 ATA, nuclear and mitochondrial DNA oxidation and astrocytosis was attenuated in the cerebellum and hippocampus. Less oxidant injury in these regions was accompanied by reduced conjugated microtubule-associated protein 1A/1B-light chain 3 (LC3-II), an index of mitophagy, and phosphorylated cAMP response element binding protein (pCREB), an initiator of mitochondrial biogenesis. We conclude that GABA prevents cerebral hyperemia and delays neuroexcitation under extreme HBO2, limiting oxidant damage in the cerebellum and hippocampus, and likely lowering mitophagy flux and initiation of pCREB-initiated mitochondrial biogenesis.Item Open Access Increased Antiseizure Effectiveness with Tiagabine Combined with Sodium Channel Antagonists in Mice Exposed to Hyperbaric Oxygen.(Neurotoxicity research, 2019-11) Demchenko, Ivan T; Zhilyaev, Sergei Yu; Alekseeva, Olga S; Krivchenko, Alexander I; Piantadosi, Claude A; Gasier, Heath GHyperbaric oxygen (HBO2) is acutely toxic to the central nervous system, culminating in EEG spikes and tonic-clonic convulsions. GABA enhancers and sodium channel antagonists improve seizure latencies in HBO2 when administered individually, while combining antiepileptic drugs from different functional classes can provide greater seizure latency. We examined the combined effectiveness of GABA enhancers (tiagabine and gabapentin) with sodium channel antagonists (carbamazepine and lamotrigine) in delaying HBO2-induced seizures. A series of experiments in C57BL/6 mice exposed to 100% oxygen at 5 atmospheres absolute (ATA) were performed. We predicted equally effective doses from individual drug-dose response curves, and the combinations of tiagabine + carbamazepine or lamotrigine were tested to determine the maximally effective combined doses to be used in subsequent experiments designed to identify the type of pharmacodynamic interaction for three fixed-ratio combinations (1:3, 1:1, and 3:1) using isobolographic analysis. For both combinations, the maximally effective combined doses increased seizure latency over controls > 5-fold and were determined to interact synergistically for fixed ratios 1:1 and 3:1, additive for 1:3. These results led us to explore whether the benefits of these drug combinations could be extended to the lungs, since a centrally mediated mechanism is believed to mediate hyperoxic-induced cardiogenic lung injury. Indeed, both combinations attenuated bronchoalveolar lavage protein content by ~ 50%. Combining tiagabine with carbamazepine or lamotrigine not only affords greater antiseizure protection in HBO2 but also allows for lower doses to be used, minimizing side effects, and attenuating acute lung injury.Item Open Access S-nitrosylation of GAD65 is implicated in decreased GAD activity and oxygen-induced seizures.(Neuroscience letters, 2017-07) Gasier, Heath G; Demchenko, Ivan T; Tatro, Lynn G; Piantadosi, Claude ABreathing oxygen at partial pressures ≥2.5 atmospheres absolute, which can occur in diving and hyperbaric oxygen (HBO2) therapy, can rapidly become toxic to the central nervous system (CNS). This neurotoxicity culminates in generalized EEG epileptiform discharges, tonic-clonic convulsions and ultimately death. Increased production of neuronal nitric oxide (NO) has been implicated in eliciting hyperoxic seizures by altering the equilibrium between glutamatergic and GABAergic synaptic transmission. Inhibition of glutamic acid decarboxylase (GAD) activity in HBO2 promotes this imbalance; however, the mechanisms by which this occurs is unknown. Therefore, we conducted a series of experiments using mice, a species that is highly susceptible to CNS oxygen toxicity, to explore the possibility that NO modulates GABA metabolism. Mice were exposed to 100% oxygen at 4 ATA for various durations, and brain GAD and GABA transaminase (GABA-T) activity, as well as S-nitrosylation of GAD65 and GAD67 were determined. HBO2 inhibited GAD activity by 50% and this was negatively correlated with S-nitrosylation of GAD65, whereas GABA-T activity and S-nitrosylation of GAD67 were unaltered. These results suggest a new mechanism by which NO alters GABA metabolism, leading to neuroexcitation and seizures in HBO2.