Browsing by Author "Dimov, Georgy P"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Early hematopoiesis inhibition under chronic radiation exposure in humans.(Radiat Environ Biophys, 2010-05) Akleyev, Alexander V; Akushevich, Igor V; Dimov, Georgy P; Veremeyeva, Galina A; Varfolomeyeva, Tatyana A; Ukraintseva, Svetlana V; Yashin, Anatoly IThe major goal of this study was to identify and quantitatively describe the association between the characteristics of chronic (low-dose rate) exposure to (low LET) ionizing radiation and cellularity of peripheral blood cell lines. About 3,200 hemograms (i.e., spectra of blood counts) obtained over the years of maximal exposure to ionizing radiation (1950-1956) for inhabitants of the Techa River were used in analyses. The mean cumulative red bone marrow dose (with standard errors), calculated using Techa River Dosimetry System-2000, was 333.6 +/- 4.6 mGy (SD = 259.9 mGy, max = 1151 mGy) to the year 1956. The statistical approach included both empirical methods for estimating frequencies of cytopenic states of the investigated blood cell lines (e.g. neutrophile, platelets, erythrocyte, etc.), and regression methods, including generalized linear models and logistic regressions which allowed taking into account confounding factors (e.g., attained age, age at maximal exposure, presence of concomitant diseases, and demographic characteristics). The results of the analyses demonstrated hematopoiesis inhibition manifested by a decrease in peripheral blood cellularity and an increase in the frequency of cytopenia in all blood cell lines (leukocytes, including lymphocytes, monocytes, neutrophiles, as well as platelets and erythrocytes). The intensity of hematopoiesis inhibition in the period of maximal exposures is determined by the combined influence of the dose rate and cumulative dose. The contribution of specific confounding factors was quantified and shown to be much less important than dose characteristics. The best predictor among dose characteristics was identified for each blood cell line. A 2-fold increase in dose rate is assumed to be a characteristic of radiosensitivity and a quantitative characteristic of the effect.Item Open Access Early hematopoietic effects of chronic radiation exposure in humans.(Health Phys, 2010-09) Akleyev, Alexander V; Akushevich, Igor V; Dimov, Georgy P; Veremeyeva, Galina A; Varfolomeyeva, Tatyana A; Ukraintseva, Svetlana V; Yashin, Anatoly IThe major goal of this study is to investigate and quantitatively describe the nature of the relationship between the characteristics of chronic exposure to ionizing radiation and specific patterns of hematopoiesis reduction. The study is based on about 3,200 hemograms taken for inhabitants of the Techa riverside villages over the years 1951-1956, i.e., the period characterized by a gradual decrease in dose rates. The mean cumulative red bone marrow dose was 333.6 + or - 4.6 mGy. The approach to statistical analyses involved both empirical methods and modeling (generalized linear models and logistic regressions). The results of the analyses highlighted a gradual increase in the frequency of cytopenias with dose rate. The impact of exposure on hematopoiesis reduction patterns was found to be more substantial than that of age and health status. Dose rates resulting in a two-fold increase in the frequency of cytopenias have been estimated.Item Open Access Modeling deterministic effects in hematopoietic system caused by chronic exposure to ionizing radiation in large human cohorts.(Health Phys, 2010-09) Akushevich, Igor V; Veremeyeva, Galina A; Dimov, Georgy P; Ukraintseva, Svetlana V; Arbeev, Konstantin G; Akleyev, Alexander V; Yashin, Anatoly IA new model of the hematopoietic system for humans chronically exposed to ionizing radiation allows for quantitative description of the initial hematopoiesis inhibition and subsequent increase in the risks of late stochastic effects such as leukemia. This model describes the dynamics of the hematopoietic stem cell compartment as well as the dynamics of each of the three blood cell types (leukocytes, erythrocytes, and platelets). The model parameters are estimated from the results of other experiments. They include the steady-state numbers of hematopoietic stem cells and peripheral blood cell lines for an unexposed organism, amplification parameters for each blood cell line, parameters describing the proliferation and apoptosis, parameters of feedback functions regulating the steady-state numbers, and characteristics of radiosensitivity in respect to cell death and non-lethal cell damages. The dynamic model of hematopoiesis is applied to the data on a subcohort of the Techa River residents with hematological measurements (e.g., blood counts) performed in 1950-1956 (which totals to about 3,500 exposed individuals). Among well-described effects observed in these data are the slope values of the dose-effect curves describing the hematopoietic inhibition and the dose rate patterns of the fractions of cytopenic states (e.g., leukopenia, thrombocytopenia). The model has been further generalized by inclusion of the component describing the risk of late stochastic effects. The risks of the development of late effects (such as leukemia) in population groups with specific patterns of early reactions in hematopoiesis (such as leukopenia induced by ionizing radiation) are investigated using simulation studies and compared to data.Item Open Access Modeling hematopoietic system response caused by chronic exposure to ionizing radiation.(Radiat Environ Biophys, 2011-05) Akushevich, Igor V; Veremeyeva, Galina A; Dimov, Georgy P; Ukraintseva, Svetlana V; Arbeev, Konstantin G; Akleyev, Alexander V; Yashin, Anatoly IA new model of the hematopoietic system response in humans chronically exposed to ionizing radiation describes the dynamics of the hematopoietic stem cell compartment as well as the dynamics of each of the four blood cell types (lymphocytes, neutrophiles, erythrocytes, and platelets). The required model parameters were estimated based on available results of human and experimental animal studies. They include the steady-state number of hematopoietic stem cells and peripheral blood cell lines in an unexposed organism, amplification parameters for each blood line, parameters describing proliferation and apoptosis, parameters of feedback functions regulating the steady-state numbers, and characteristics of radiosensitivity related to cell death and non-lethal cell damage. The model predictions were tested using data on hematological measurements (e.g., blood counts) performed in 1950-1956 in the Techa River residents chronically exposed to ionizing radiation since 1949. The suggested model of hematopoiesis is capable of describing experimental findings in the Techa River Cohort, including: (1) slopes of the dose-effect curves reflecting the inhibition of hematopoiesis due to chronic ionizing radiation, (2) delay in effect of chronic exposure and accumulated character of the effect, and (3) dose-rate patterns for different cytopenic states (e.g., leukopenia, thrombocytopenia).