Browsing by Author "Ding, Jin-Dong"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism.(Nat Commun, 2016-05-10) Wang, Xiaoming; Bey, Alexandra L; Katz, Brittany M; Badea, Alexandra; Kim, Namsoo; David, Lisa K; Duffney, Lara J; Kumar, Sunil; Mague, Stephen D; Hulbert, Samuel W; Dutta, Nisha; Hayrapetyan, Volodya; Yu, Chunxiu; Gaidis, Erin; Zhao, Shengli; Ding, Jin-Dong; Xu, Qiong; Chung, Leeyup; Rodriguiz, Ramona M; Wang, Fan; Weinberg, Richard J; Wetsel, William C; Dzirasa, Kafui; Yin, Henry; Jiang, Yong-HuiHuman neuroimaging studies suggest that aberrant neural connectivity underlies behavioural deficits in autism spectrum disorders (ASDs), but the molecular and neural circuit mechanisms underlying ASDs remain elusive. Here, we describe a complete knockout mouse model of the autism-associated Shank3 gene, with a deletion of exons 4-22 (Δe4-22). Both mGluR5-Homer scaffolds and mGluR5-mediated signalling are selectively altered in striatal neurons. These changes are associated with perturbed function at striatal synapses, abnormal brain morphology, aberrant structural connectivity and ASD-like behaviour. In vivo recording reveals that the cortico-striatal-thalamic circuit is tonically hyperactive in mutants, but becomes hypoactive during social behaviour. Manipulation of mGluR5 activity attenuates excessive grooming and instrumental learning differentially, and rescues impaired striatal synaptic plasticity in Δe4-22(-/-) mice. These findings show that deficiency of Shank3 can impair mGluR5-Homer scaffolding, resulting in cortico-striatal circuit abnormalities that underlie deficits in learning and ASD-like behaviours. These data suggest causal links between genetic, molecular, and circuit mechanisms underlying the pathophysiology of ASDs.Item Open Access Disruption of STIM1-mediated Ca2+ sensing and energy metabolism in adult skeletal muscle compromises exercise tolerance, proteostasis, and lean mass.(Molecular metabolism, 2022-03) Wilson, Rebecca J; Lyons, Scott P; Koves, Timothy R; Bryson, Victoria G; Zhang, Hengtao; Li, TianYu; Crown, Scott B; Ding, Jin-Dong; Grimsrud, Paul A; Rosenberg, Paul B; Muoio, Deborah MObjective
Stromal interaction molecule 1 (STIM1) is a single-pass transmembrane endoplasmic/sarcoplasmic reticulum (E/SR) protein recognized for its role in a store operated Ca2+ entry (SOCE), an ancient and ubiquitous signaling pathway. Whereas STIM1 is known to be indispensable during development, its biological and metabolic functions in mature muscles remain unclear.Methods
Conditional and tamoxifen inducible muscle STIM1 knock-out mouse models were coupled with multi-omics tools and comprehensive physiology to understand the role of STIM1 in regulating SOCE, mitochondrial quality and bioenergetics, and whole-body energy homeostasis.Results
This study shows that STIM1 is abundant in adult skeletal muscle, upregulated by exercise, and is present at SR-mitochondria interfaces. Inducible tissue-specific deletion of STIM1 (iSTIM1 KO) in adult muscle led to diminished lean mass, reduced exercise capacity, and perturbed fuel selection in the settings of energetic stress, without affecting whole-body glucose tolerance. Proteomics and phospho-proteomics analyses of iSTIM1 KO muscles revealed molecular signatures of low-grade E/SR stress and broad activation of processes and signaling networks involved in proteostasis.Conclusion
These results show that STIM1 regulates cellular and mitochondrial Ca2+ dynamics, energy metabolism and proteostasis in adult skeletal muscles. Furthermore, these findings provide insight into the pathophysiology of muscle diseases linked to disturbances in STIM1-dependent Ca2+ handling.Item Open Access STIM1-Ca(2+) signaling is required for the hypertrophic growth of skeletal muscle in mice.(Molecular and cellular biology, 2012-08) Li, Tianyu; Finch, Elizabeth A; Graham, Victoria; Zhang, Zhu-Shan; Ding, Jin-Dong; Burch, Jarrett; Oh-hora, Masatsugu; Rosenberg, PaulImmediately after birth, skeletal muscle must undergo an enormous period of growth and differentiation that is coordinated by several intertwined growth signaling pathways. How these pathways are integrated remains unclear but is likely to involve skeletal muscle contractile activity and calcium (Ca(2+)) signaling. Here, we show that Ca(2+) signaling governed by stromal interaction molecule 1 (STIM1) plays a central role in the integration of signaling and, therefore, muscle growth and differentiation. Conditional deletion of STIM1 from the skeletal muscle of mice (mSTIM1(-/-) mice) leads to profound growth delay, reduced myonuclear proliferation, and perinatal lethality. We show that muscle fibers of neonatal mSTIM1(-/-) mice cannot support the activity-dependent Ca(2+) transients evoked by tonic neurostimulation, even though excitation contraction coupling (ECC) remains unperturbed. In addition, disruption of tonic Ca(2+) signaling in muscle fibers attenuates downstream muscle growth signaling, such as that of calcineurin, mitogen-activated protein (MAP) kinases, extracellular signal-regulated kinase 1 and 2 (ERK1/2), and AKT. Based on our findings, we propose a model wherein STIM1-mediated store-operated calcium entry (SOCE) governs the Ca(2+) signaling required for cellular processes that are necessary for neonatal muscle growth and differentiation.