Browsing by Author "Donald, A"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A slicing obstruction from the $\frac {10}{8}$ theorem(Proceedings of the American Mathematical Society, 2016-08-29) Donald, A; Vafaee, F© 2016 American Mathematical Society. From Furuta’s 10/8 theorem, we derive a smooth slicing obstruction for knots in S3 using a spin 4-manifold whose boundary is 0-surgery on a knot. We show that this obstruction is able to detect torsion elements in the smooth concordance group and find topologically slice knots which are not smoothly slice.Item Open Access On L-space knots obtained from unknotting arcs in alternating diagramsDonald, A; McCoy, D; Vafaee, FLet $D$ be a diagram of an alternating knot with unknotting number one. The branched double cover of $S^3$ branched over $D$ is an L-space obtained by half integral surgery on a knot $K_D$. We denote the set of all such knots $K_D$ by $\mathcal D$. We characterize when $K_D\in \mathcal D$ is a torus knot, a satellite knot or a hyperbolic knot. In a different direction, we show that for a given $n>0$, there are only finitely many L-space knots in $\mathcal D$ with genus less than $n$.