Browsing by Author "Doraiswamy, P Murali"
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Item Open Access Accelerating stem cell trials for Alzheimer's disease.(The Lancet. Neurology, 2016-02) Hunsberger, Joshua G; Rao, Mahendra; Kurtzberg, Joanne; Bulte, Jeff WM; Atala, Anthony; LaFerla, Frank M; Greely, Henry T; Sawa, Akira; Gandy, Sam; Schneider, Lon S; Doraiswamy, P MuraliAt present, no effective cure or prophylaxis exists for Alzheimer's disease. Symptomatic treatments are modestly effective and offer only temporary benefit. Advances in induced pluripotent stem cell (iPSC) technology have the potential to enable development of so-called disease-in-a-dish personalised models to study disease mechanisms and reveal new therapeutic approaches, and large panels of iPSCs enable rapid screening of potential drug candidates. Different cell types can also be produced for therapeutic use. In 2015, the US Food and Drug Administration granted investigational new drug approval for the first phase 2A clinical trial of ischaemia-tolerant mesenchymal stem cells to treat Alzheimer's disease in the USA. Similar trials are either underway or being planned in Europe and Asia. Although safety and ethical concerns remain, we call for the acceleration of human stem cell-based translational research into the causes and potential treatments of Alzheimer's disease.Item Open Access Altered bile acid profile associates with cognitive impairment in Alzheimer's disease-An emerging role for gut microbiome.(Alzheimer's & dementia : the journal of the Alzheimer's Association, 2018-10-08) MahmoudianDehkordi, Siamak; Arnold, Matthias; Nho, Kwangsik; Ahmad, Shahzad; Jia, Wei; Xie, Guoxiang; Louie, Gregory; Kueider-Paisley, Alexandra; Moseley, M Arthur; Thompson, J Will; St John Williams, Lisa; Tenenbaum, Jessica D; Blach, Colette; Baillie, Rebecca; Han, Xianlin; Bhattacharyya, Sudeepa; Toledo, Jon B; Schafferer, Simon; Klein, Sebastian; Koal, Therese; Risacher, Shannon L; Kling, Mitchel Allan; Motsinger-Reif, Alison; Rotroff, Daniel M; Jack, John; Hankemeier, Thomas; Bennett, David A; De Jager, Philip L; Trojanowski, John Q; Shaw, Leslie M; Weiner, Michael W; Doraiswamy, P Murali; van Duijn, Cornelia M; Saykin, Andrew J; Kastenmüller, Gabi; Kaddurah-Daouk, Rima; Alzheimer's Disease Neuroimaging Initiative and the Alzheimer Disease Metabolomics ConsortiumINTRODUCTION:Increasing evidence suggests a role for the gut microbiome in central nervous system disorders and a specific role for the gut-brain axis in neurodegeneration. Bile acids (BAs), products of cholesterol metabolism and clearance, are produced in the liver and are further metabolized by gut bacteria. They have major regulatory and signaling functions and seem dysregulated in Alzheimer's disease (AD). METHODS:Serum levels of 15 primary and secondary BAs and their conjugated forms were measured in 1464 subjects including 370 cognitively normal older adults, 284 with early mild cognitive impairment, 505 with late mild cognitive impairment, and 305 AD cases enrolled in the AD Neuroimaging Initiative. We assessed associations of BA profiles including selected ratios with diagnosis, cognition, and AD-related genetic variants, adjusting for confounders and multiple testing. RESULTS:In AD compared to cognitively normal older adults, we observed significantly lower serum concentrations of a primary BA (cholic acid [CA]) and increased levels of the bacterially produced, secondary BA, deoxycholic acid, and its glycine and taurine conjugated forms. An increased ratio of deoxycholic acid:CA, which reflects 7α-dehydroxylation of CA by gut bacteria, strongly associated with cognitive decline, a finding replicated in serum and brain samples in the Rush Religious Orders and Memory and Aging Project. Several genetic variants in immune response-related genes implicated in AD showed associations with BA profiles. DISCUSSION:We report for the first time an association between altered BA profile, genetic variants implicated in AD, and cognitive changes in disease using a large multicenter study. These findings warrant further investigation of gut dysbiosis and possible role of gut-liver-brain axis in the pathogenesis of AD.Item Open Access Assessment of the Feasibility of Using Noninvasive Wearable Biometric Monitoring Sensors to Detect Influenza and the Common Cold Before Symptom Onset.(JAMA network open, 2021-09) Grzesiak, Emilia; Bent, Brinnae; McClain, Micah T; Woods, Christopher W; Tsalik, Ephraim L; Nicholson, Bradly P; Veldman, Timothy; Burke, Thomas W; Gardener, Zoe; Bergstrom, Emma; Turner, Ronald B; Chiu, Christopher; Doraiswamy, P Murali; Hero, Alfred; Henao, Ricardo; Ginsburg, Geoffrey S; Dunn, JessilynImportance
Currently, there are no presymptomatic screening methods to identify individuals infected with a respiratory virus to prevent disease spread and to predict their trajectory for resource allocation.Objective
To evaluate the feasibility of using noninvasive, wrist-worn wearable biometric monitoring sensors to detect presymptomatic viral infection after exposure and predict infection severity in patients exposed to H1N1 influenza or human rhinovirus.Design, setting, and participants
The cohort H1N1 viral challenge study was conducted during 2018; data were collected from September 11, 2017, to May 4, 2018. The cohort rhinovirus challenge study was conducted during 2015; data were collected from September 14 to 21, 2015. A total of 39 adult participants were recruited for the H1N1 challenge study, and 24 adult participants were recruited for the rhinovirus challenge study. Exclusion criteria for both challenges included chronic respiratory illness and high levels of serum antibodies. Participants in the H1N1 challenge study were isolated in a clinic for a minimum of 8 days after inoculation. The rhinovirus challenge took place on a college campus, and participants were not isolated.Exposures
Participants in the H1N1 challenge study were inoculated via intranasal drops of diluted influenza A/California/03/09 (H1N1) virus with a mean count of 106 using the median tissue culture infectious dose (TCID50) assay. Participants in the rhinovirus challenge study were inoculated via intranasal drops of diluted human rhinovirus strain type 16 with a count of 100 using the TCID50 assay.Main outcomes and measures
The primary outcome measures included cross-validated performance metrics of random forest models to screen for presymptomatic infection and predict infection severity, including accuracy, precision, sensitivity, specificity, F1 score, and area under the receiver operating characteristic curve (AUC).Results
A total of 31 participants with H1N1 (24 men [77.4%]; mean [SD] age, 34.7 [12.3] years) and 18 participants with rhinovirus (11 men [61.1%]; mean [SD] age, 21.7 [3.1] years) were included in the analysis after data preprocessing. Separate H1N1 and rhinovirus detection models, using only data on wearble devices as input, were able to distinguish between infection and noninfection with accuracies of up to 92% for H1N1 (90% precision, 90% sensitivity, 93% specificity, and 90% F1 score, 0.85 [95% CI, 0.70-1.00] AUC) and 88% for rhinovirus (100% precision, 78% sensitivity, 100% specificity, 88% F1 score, and 0.96 [95% CI, 0.85-1.00] AUC). The infection severity prediction model was able to distinguish between mild and moderate infection 24 hours prior to symptom onset with an accuracy of 90% for H1N1 (88% precision, 88% sensitivity, 92% specificity, 88% F1 score, and 0.88 [95% CI, 0.72-1.00] AUC) and 89% for rhinovirus (100% precision, 75% sensitivity, 100% specificity, 86% F1 score, and 0.95 [95% CI, 0.79-1.00] AUC).Conclusions and relevance
This cohort study suggests that the use of a noninvasive, wrist-worn wearable device to predict an individual's response to viral exposure prior to symptoms is feasible. Harnessing this technology would support early interventions to limit presymptomatic spread of viral respiratory infections, which is timely in the era of COVID-19.Item Open Access Association of Altered Liver Enzymes With Alzheimer Disease Diagnosis, Cognition, Neuroimaging Measures, and Cerebrospinal Fluid Biomarkers.(JAMA network open, 2019-07-03) Nho, Kwangsik; Kueider-Paisley, Alexandra; Ahmad, Shahzad; MahmoudianDehkordi, Siamak; Arnold, Matthias; Risacher, Shannon L; Louie, Gregory; Blach, Colette; Baillie, Rebecca; Han, Xianlin; Kastenmüller, Gabi; Trojanowski, John Q; Shaw, Leslie M; Weiner, Michael W; Doraiswamy, P Murali; van Duijn, Cornelia; Saykin, Andrew J; Kaddurah-Daouk, Rima; Alzheimer’s Disease Neuroimaging Initiative and the Alzheimer Disease Metabolomics ConsortiumImportance:Increasing evidence suggests an important role of liver function in the pathophysiology of Alzheimer disease (AD). The liver is a major metabolic hub; therefore, investigating the association of liver function with AD, cognition, neuroimaging, and CSF biomarkers would improve the understanding of the role of metabolic dysfunction in AD. Objective:To examine whether liver function markers are associated with cognitive dysfunction and the "A/T/N" (amyloid, tau, and neurodegeneration) biomarkers for AD. Design, Setting, and Participants:In this cohort study, serum-based liver function markers were measured from September 1, 2005, to August 31, 2013, in 1581 AD Neuroimaging Initiative participants along with cognitive measures, cerebrospinal fluid (CSF) biomarkers, brain atrophy, brain glucose metabolism, and amyloid-β accumulation. Associations of liver function markers with AD-associated clinical and A/T/N biomarkers were assessed using generalized linear models adjusted for confounding variables and multiple comparisons. Statistical analysis was performed from November 1, 2017, to February 28, 2019. Exposures:Five serum-based liver function markers (total bilirubin, albumin, alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase) from AD Neuroimaging Initiative participants were used as exposure variables. Main Outcomes and Measures:Primary outcomes included diagnosis of AD, composite scores for executive functioning and memory, CSF biomarkers, atrophy measured by magnetic resonance imaging, brain glucose metabolism measured by fludeoxyglucose F 18 (18F) positron emission tomography, and amyloid-β accumulation measured by [18F]florbetapir positron emission tomography. Results:Participants in the AD Neuroimaging Initiative (n = 1581; 697 women and 884 men; mean [SD] age, 73.4 [7.2] years) included 407 cognitively normal older adults, 20 with significant memory concern, 298 with early mild cognitive impairment, 544 with late mild cognitive impairment, and 312 with AD. An elevated aspartate aminotransferase (AST) to alanine aminotransferase (ALT) ratio and lower levels of ALT were associated with AD diagnosis (AST to ALT ratio: odds ratio, 7.932 [95% CI, 1.673-37.617]; P = .03; ALT: odds ratio, 0.133 [95% CI, 0.042-0.422]; P = .004) and poor cognitive performance (AST to ALT ratio: β [SE], -0.465 [0.180]; P = .02 for memory composite score; β [SE], -0.679 [0.215]; P = .006 for executive function composite score; ALT: β [SE], 0.397 [0.128]; P = .006 for memory composite score; β [SE], 0.637 [0.152]; P < .001 for executive function composite score). Increased AST to ALT ratio values were associated with lower CSF amyloid-β 1-42 levels (β [SE], -0.170 [0.061]; P = .04) and increased amyloid-β deposition (amyloid biomarkers), higher CSF phosphorylated tau181 (β [SE], 0.175 [0.055]; P = .02) (tau biomarkers) and higher CSF total tau levels (β [SE], 0.160 [0.049]; P = .02) and reduced brain glucose metabolism (β [SE], -0.123 [0.042]; P = .03) (neurodegeneration biomarkers). Lower levels of ALT were associated with increased amyloid-β deposition (amyloid biomarkers), and reduced brain glucose metabolism (β [SE], 0.096 [0.030]; P = .02) and greater atrophy (neurodegeneration biomarkers). Conclusions and Relevance:Consistent associations of serum-based liver function markers with cognitive performance and A/T/N biomarkers for AD highlight the involvement of metabolic disturbances in the pathophysiology of AD. Further studies are needed to determine if these associations represent a causative or secondary role. Liver enzyme involvement in AD opens avenues for novel diagnostics and therapeutics.Item Open Access Clinical Trials to Gain FDA Approval for Computerized Cognitive Training: What Is the Ideal Control Condition?(Frontiers in aging neuroscience, 2016-01) Motter, Jeffrey N; Devanand, Davangere P; Doraiswamy, P Murali; Sneed, Joel RItem Open Access Cortical β-amyloid levels and neurocognitive performance after cardiac surgery.(BMJ Open, 2013-09-20) Klinger, Rebecca Y; James, Olga G; Wong, Terence Z; Newman, Mark F; Doraiswamy, P Murali; Mathew, Joseph PINTRODUCTION: Neurological and neurocognitive dysfunction occurs frequently in the large number of increasingly elderly patients undergoing cardiac surgery every year. Perioperative cognitive deficits have been shown to persist after discharge and up to several years after surgery. More importantly, perioperative cognitive decline is predictive of long-term cognitive dysfunction, reduced quality of life and increased mortality. The proposed mechanisms to explain the cognitive decline associated with cardiac surgery include the neurotoxic accumulation of β-amyloid. This study will be the first to provide molecular imaging to assess the relationship between neocortical β-amyloid deposition and postoperative cognitive dysfunction. METHODS AND ANALYSIS: 40 patients providing informed consent for participation in this Institutional Review Board-approved study and undergoing cardiac (coronary artery bypass graft (CABG), valve or CABG+valve) surgery with cardiopulmonary bypass will be enrolled based on defined inclusion and exclusion criteria. At 6 weeks after surgery, participants will undergo (18)F-florbetapir positron emission tomography imaging to assess neocortical β-amyloid burden along with a standard neurocognitive battery and blood testing for apolipoprotein E ε-4 genotype. RESULTS: The results will be compared to those of 40 elderly controls and 40 elderly patients with mild cognitive impairment who have previously completed (18)F-florbetapir imaging. ETHICS AND DISSEMINATION: This study has been approved by the Duke University Institutional Review Board. The results will provide novel mechanistic insights into postoperative cognitive dysfunction that will inform future studies into potential treatments or preventative therapies of long-term cognitive decline after cardiac surgery.Item Open Access Evaluating Alzheimer Disease With Flortaucipir and Florbetapir PET: A Clinical Case Series.(Clinical nuclear medicine, 2021-07) James, Olga G; Linares, Alexandra R; Hellegers, Caroline; Doraiswamy, P Murali; Wong, Terence ZAbstract
Early, accurate diagnosis of Alzheimer disease (AD) is essential but remains challenging. Neuropathological hallmarks of AD are β-amyloid neuritic plaques and tau protein neurofibrillary tangles. 18F-Florbetapir is one of several available PET tracers for imaging cortical fibrillary β-amyloid plaques. 18F-Flortaucipir PET was recently approved for evaluating the distribution and density of aggregated neurofibrillary tangles. We present cases of mild cognitive impairment or suspected AD to depict the nuances of flortaucipir distribution and scan interpretation as well as how combined information from amyloid and tau PET may help with differential diagnosis and prognosis.Item Open Access Neuroimaging assessment of early and late neurobiological sequelae of traumatic brain injury: implications for CTE.(Front Neurosci, 2015) Sundman, Mark; Doraiswamy, P Murali; Morey, Rajendra ATraumatic brain injury (TBI) has been increasingly accepted as a major external risk factor for neurodegenerative morbidity and mortality. Recent evidence indicates that the resultant chronic neurobiological sequelae following head trauma may, at least in part, contribute to a pathologically distinct disease known as Chronic Traumatic Encephalopathy (CTE). The clinical manifestation of CTE is variable, but the symptoms of this progressive disease include impaired memory and cognition, affective disorders (i.e., impulsivity, aggression, depression, suicidality, etc.), and diminished motor control. Notably, mounting evidence suggests that the pathology contributing to CTE may be caused by repetitive exposure to subconcussive hits to the head, even in those with no history of a clinically evident head injury. Given the millions of athletes and military personnel with potential exposure to repetitive subconcussive insults and TBI, CTE represents an important public health issue. However, the incidence rates and pathological mechanisms are still largely unknown, primarily due to the fact that there is no in vivo diagnostic tool. The primary objective of this manuscript is to address this limitation and discuss potential neuroimaging modalities that may be capable of diagnosing CTE in vivo through the detection of tau and other known pathological features. Additionally, we will discuss the challenges of TBI research, outline the known pathology of CTE (with an emphasis on Tau), review current neuroimaging modalities to assess the potential routes for in vivo diagnosis, and discuss the future directions of CTE research.Item Open Access PET Imaging of Tau Pathology in Alzheimer's Disease and Tauopathies.(Frontiers in neurology, 2015-01) James, Olga G; Doraiswamy, P Murali; Borges-Neto, Salvador