Browsing by Author "Everitt, Henry O"
Results Per Page
Sort Options
Item Open Access Adaptive millimeter-wave synthetic aperture imaging for compressive sampling of sparse scenes.(Opt Express, 2014-06-02) Mrozack, Alex; Heimbeck, Martin; Marks, Daniel L; Richard, Jonathan; Everitt, Henry O; Brady, David JWe apply adaptive sensing techniques to the problem of locating sparse metallic scatterers using high-resolution, frequency modulated continuous wave W-band RADAR. Using a single detector, a frequency stepped source, and a lateral translation stage, inverse synthetic aperture RADAR reconstruction techniques are used to search for one or two wire scatterers within a specified range, while an adaptive algorithm determined successive sampling locations. The two-dimensional location of each scatterer is thereby identified with sub-wavelength accuracy in as few as 1/4 the number of lateral steps required for a simple raster scan. The implications of applying this approach to more complex scattering geometries are explored in light of the various assumptions made.Item Open Access Aluminum for plasmonics.(ACS Nano, 2014-01-28) Knight, Mark W; King, Nicholas S; Liu, Lifei; Everitt, Henry O; Nordlander, Peter; Halas, Naomi JUnlike silver and gold, aluminum has material properties that enable strong plasmon resonances spanning much of the visible region of the spectrum and into the ultraviolet. This extended response, combined with its natural abundance, low cost, and amenability to manufacturing processes, makes aluminum a highly promising material for commercial applications. Fabricating Al-based nanostructures whose optical properties correspond with theoretical predictions, however, can be a challenge. In this work, the Al plasmon resonance is observed to be remarkably sensitive to the presence of oxide within the metal. For Al nanodisks, we observe that the energy of the plasmon resonance is determined by, and serves as an optical reporter of, the percentage of oxide present within the Al. This understanding paves the way toward the use of aluminum as a low-cost plasmonic material with properties and potential applications similar to those of the coinage metals.Item Open Access Compressive sensing and adaptive sampling applied to millimeter wave inverse synthetic aperture imaging(Optics Express, 2017-02-06) Zhu, Ruoyu; Richard, Jonathan T; Brady, David J; Marks, Daniel L; Everitt, Henry O© 2017 Optical Society of America.In order to improve speed and efficiency over traditional scanning methods, a Bayesian compressive sensing algorithm using adaptive spatial sampling is developed for single detector millimeter wave synthetic aperture imaging. The application of this algorithm is compared to random sampling to demonstrate that the adaptive algorithm converges faster for simple targets and generates more reliable reconstructions for complex targets.Item Open Access Extraordinary Light-Induced Local Angular Momentum near Metallic Nanoparticles.(ACS Nano, 2016-04-26) Alabastri, Alessandro; Yang, Xiao; Manjavacas, Alejandro; Everitt, Henry O; Nordlander, PeterThe intense local field induced near metallic nanostructures provides strong enhancements for surface-enhanced spectroscopies, a major focus of plasmonics research over the past decade. Here we consider that plasmonic nanoparticles can also induce remarkably large electromagnetic field gradients near their surfaces. Sizeable field gradients can excite dipole-forbidden transitions in nearby atoms or molecules and provide unique spectroscopic fingerprinting for chemical and bimolecular sensing. Specifically, we investigate how the local field gradients near metallic nanostructures depend on geometry, polarization, and wavelength. We introduce the concept of the local angular momentum (LAM) vector as a useful figure of merit for the design of nanostructures that provide large field gradients. This quantity, based on integrated fields rather than field gradients, is particularly well-suited for optimization using numerical grid-based full wave electromagnetic simulations. The LAM vector has a more compact structure than the gradient matrix and can be straightforwardly associated with the angular momentum of the electromagnetic field incident on the plasmonic structures.Item Open Access Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles.(ACS Nano, 2015-02-24) Knight, Mark W; Coenen, Toon; Yang, Yang; Brenny, Benjamin JM; Losurdo, Maria; Brown, April S; Everitt, Henry O; Polman, AlbertGallium has recently been demonstrated as a phase-change plasmonic material offering UV tunability, facile synthesis, and a remarkable stability due to its thin, self-terminating native oxide. However, the dense irregular nanoparticle (NP) ensembles fabricated by molecular-beam epitaxy make optical measurements of individual particles challenging. Here we employ hyperspectral cathodoluminescence (CL) microscopy to characterize the response of single Ga NPs of various sizes within an irregular ensemble by spatially and spectrally resolving both in-plane and out-of-plane plasmonic modes. These modes, which include hybridized dipolar and higher-order terms due to phase retardation and substrate interactions, are correlated with finite difference time domain (FDTD) electrodynamics calculations that consider the Ga NP contact angle, substrate, and native Ga/Si surface oxidation. This study experimentally confirms previous theoretical predictions of plasmonic size-tunability in single Ga NPs and demonstrates that the plasmonic modes of interacting Ga nanoparticles can hybridize to produce strong hot spots in the ultraviolet. The controlled, robust UV plasmonic resonances of gallium nanoparticles are applicable to energy- and phase-specific applications such as optical memory, environmental remediation, and simultaneous fluorescence and surface-enhanced Raman spectroscopies.Item Open Access Gallium-based Ultraviolet Nanoplasmonics(2013) Yang, YangNanometer-scale metallic structures have been widely and intensively studied over the last decade because of their remarkable plasmonic properties that can enhance local electromagnetic (EM) fields. However, most plasmonic applications are restricted to the visible and near infrared photon energies due to the limitations of the surface plasmon resonance energies of the most commonly used plasmonic metals: Au and Ag. Plasmonic applications in ultraviolet (UV) are of great interest because Raman scattering sections are larger and do not overlap fluorescence spectra. UV plasmonics also benefit from high spatial resolution and low penetration depth. However, an appropriate UV plasmonic material must be identified.
We proposed and demonstrated that gallium is a highly-promising and compelling material for UV nanoplasmonics through synthesis of size-controlled nanoparticle arrays, EM modeling of local field enhancement, ellipsometric and spatial characterization of the arrays, and analytical measurement of UV- enhanced Raman and fluorescence spectra. Self-assembled arrays of hemispherical gallium nanoparticles deposited by molecular beam epitaxy on a sapphire support are characterized with spatial and ellipsometric measurements. Spin-casting a thin film of crystal violet upon these nanoparticles permitted the demonstration of surface-enhanced Raman spectra, fluorescence, and molecular photodegradation following excitation by a HeCd laser operating at 325 nm (UV). Measured local Raman enhancement factors exceeding 107 demonstrated the potential of gallium nanoparticle arrays for plasmonically-enhanced ultraviolet detection and remediation.
Item Open Access How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures.(Opt Express, 2016-09-05) Gutierrez, Yael; Ortiz, Dolores; Sanz, Juan M; Saiz, Jose M; Gonzalez, Francisco; Everitt, Henry O; Moreno, FernandoThe ultraviolet (UV) range presents new challenges for plasmonics, with interesting applications ranging from engineering to biology. In previous research, gallium, aluminum, and magnesium were found to be very promising UV plasmonic metals. However, a native oxide shell surrounds nanostructures of these metals that affects their plasmonic response. Here, through a nanoparticle-oxide core-shell model, we present a detailed electromagnetic analysis of how oxidation alters the UV-plasmonic response of spherical or hemisphere-on-substrate nanostructures made of those metals by analyzing the spectral evolution of two parameters: the absorption efficiency (far-field analysis) and the enhancement of the local intensity averaged over the nanoparticle surface (near-field analysis).Item Open Access Optical characterization of electron-phonon interactions at the saddle point in graphene.(Phys Rev Lett, 2014-05-09) Roberts, Adam T; Binder, Rolf; Kwong, Nai H; Golla, Dheeraj; Cormode, Daniel; LeRoy, Brian J; Everitt, Henry O; Sandhu, ArvinderThe role of many-body interactions is experimentally and theoretically investigated near the saddle point absorption peak of graphene. The time and energy-resolved differential optical transmission measurements reveal the dominant role played by electron-acoustic phonon coupling in band structure renormalization. Using a Born approximation for electron-phonon coupling and experimental estimates of the dynamic lattice temperature, we compute the differential transmission line shape. Comparing the numerical and experimental line shapes, we deduce the effective acoustic deformation potential to be Deff(ac)≃5 eV. This value is in accord with recent theoretical predictions but differs from those extracted using electrical transport measurements.Item Unknown Photoexcited Emission Efficiencies of Zinc Oxide(2009) Foreman, John VincentOptoelectronic properties of the II-VI semiconductor zinc oxide (ZnO) have been studied scientifically for almost 60 years; however, many fundamental questions remain unanswered about its two primary emission bands--the exciton-related luminescence in the ultraviolet and the defect-related emission band centered in the green portion of the visible spectrum. The work in this dissertation was motivated by the surprising optical properties of a ZnO nanowire sample grown by the group of Prof. Jie Liu, Department of Chemistry, Duke University. We found that this nanowire sample exhibited defect-related green/white emission of unprecedented intensity relative to near-band-edge luminescence. The experimental work comprising this dissertation was designed to explain the optical properties of this ZnO nanowire sample. Understanding the physics underlying such exceptional intensity of green emission addresses many of the open questions of ZnO research and assesses the possibility of using ZnO nanostructures as an ultraviolet-excited, broadband visible phosphor.
The goal of this dissertation is to provide insight into what factors influence the radiative and nonradiative recombination efficiencies of ZnO by characterizing simultaneously the optical properties of the near-band-edge ultraviolet and the defect-related green emission bands. Specifically, we seek to understand the mechanisms of ultraviolet and green emission, the mechanism of energy transfer between them, and the evolution of their emission efficiencies with parameters such as excitation density and sample temperature. These fundamental but unanswered questions of ZnO emission are addressed here by using a novel combination of ultrafast spectroscopic techniques in conjunction with a systematic set of ZnO samples. Through this systematic investigation, ZnO may be realistically assessed as a potential green/white light phosphor.
Photoluminescence techniques are used to characterize the thermal quenching behavior of both emission bands in micrometer-scale ZnO powders. Green luminescence quenching is described by activation energies associated with bound excitons. We find that green luminescence efficiency is maximized when excitons are localized in the vicinity of green-emitting defects. Subsequent photoluminescence excitation measurements performed at multiple temperatures independently verified that green band photoluminescence intensity directly correlates with the photogenerated exciton population.
The spatial distributions of green-emitting defects and nonradiative traps are elucidated by an innovative combination of quantum efficiency and time-integrated/resolved photoluminescence measurements. By combining these techniques for the first time, we take advantage of the drastically different absorption coefficients for one- and two-photon excitations to provide details about the types and concentrations of surface and bulk defects and to demonstrate the non-negligible effects of reabsorption. A comparison of results for unannealed and annealed ZnO powders indicates that the annealing process creates a high density of green-emitting defects near the surface of the sample while simultaneously reducing the density of bulk nonradiative traps. These experimental results are discussed in the context of a simple rate equation model that accounts for the quantum efficiencies of both emission bands.
For both femtosecond pulsed and continuous-wave excitations, the green band efficiency is found to decrease with increasing excitation density--from 35% to 5% for pulsed excitation spanning 1-1000 uJ/cm2, and from 60% to 5% for continuous excitation in the range 0.01-10 W/cm2. On the other hand, near-band-edge emission efficiency increases from 0.4% to 25% for increasing pulsed excitation density and from 0.1% to 0.6% for continuous excitation. It is shown experimentally that these changes in efficiency correspond to a reduction in exciton formation efficiency. The differences in efficiencies for pulsed versus continuous-wave excitation are described by changes in the relative rates of exciton luminescence and exciton capture at green defects based on an extended rate equation model that accounts for the excitation density dependence of both luminescence bands.
In using a systematic set of ZnO samples and a novel combination of optical techniques to characterize them, this body of work presents a comprehensive and detailed physical picture of recombination mechanisms in ZnO. The insight provided by these results has immediate implications for material growth/processing techniques and should help material growers control the relative efficiencies of ultraviolet, green/visible, and nonradiative recombination channels in ZnO.
Item Unknown Photoluminescence Mechanism and Photocatalytic Activity of Organic-Inorganic Hybrid Materials Formed by Sequential Vapor Infiltration.(Langmuir, 2016-05-03) Akyildiz, Halil I; Stano, Kelly L; Roberts, Adam T; Everitt, Henry O; Jur, Jesse SOrganic-inorganic hybrid materials formed by sequential vapor infiltration (SVI) of trimethylaluminum into polyester fibers are demonstrated, and the photoluminescence of the fibers is evaluated using a combined UV-vis and photoluminescence excitation (PLE) spectroscopy approach. The optical activity of the modified fibers depends on infiltration thermal processing conditions and is attributed to the reaction mechanisms taking place at different temperatures. At low temperatures a single excitation band and dual emission bands are observed, while, at high temperatures, two distinct absorption bands and one emission band are observed, suggesting that the physical and chemical structure of the resulting hybrid material depends on the SVI temperature. Along with enhancing the photoluminescence intensity of the PET fibers, the internal quantum efficiency also increased to 5-fold from ∼4-5% to ∼24%. SVI processing also improved the photocatalytic activity of the fibers, as demonstrated by photodeposition of Ag and Au metal particles out of an aqueous metal salt solution onto fiber surfaces via UVA light exposure. Toward applications in flexible electronics, well-defined patterning of the metallic materials is achieved by using light masking and focused laser rastering approaches.Item Unknown Rhodium nanoparticles for ultraviolet plasmonics.(Nano Lett, 2015-02-11) Watson, Anne M; Zhang, Xiao; Alcaraz de la Osa, Rodrigo; Marcos Sanz, Juan; González, Francisco; Moreno, Fernando; Finkelstein, Gleb; Liu, Jie; Everitt, Henry OThe nonoxidizing catalytic noble metal rhodium is introduced for ultraviolet plasmonics. Planar tripods of 8 nm Rh nanoparticles, synthesized by a modified polyol reduction method, have a calculated local surface plasmon resonance near 330 nm. By attaching p-aminothiophenol, local field-enhanced Raman spectra and accelerated photodamage were observed under near-resonant ultraviolet illumination, while charge transfer simultaneously increased fluorescence for up to 13 min. The combined local field enhancement and charge transfer demonstrate essential steps toward plasmonically enhanced ultraviolet photocatalysis.Item Unknown Wide bandwidth, millimeter-resolution inverse synthetic aperture radar imaging(Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2017-07-01) Richard, Jonathan T; Heimbeck, Martin S; Blake Autin, L; Everitt, Henry O© 2017 Optical Society of America The combination of wide bandwidth W-band inverse synthetic aperture radar imagery and high-fidelity numerical simulations has been used to identify distinguishing signatures from simple metallic and dielectric targets. Targets are located with millimeter-scale accuracy using super-resolution techniques. Radon transform reconstructions of the returns from rotated targets approached the image quality of the complete data set in a fraction of the time by sampling as few as 10 angles. The limitations of shooting-and-bouncing ray simulations at high frequencies are illustrated through a critical comparison of their predictions with the measured data and the method of moments simulations, indicating the importance of accurately capturing the obfuscating role played by multipath interference in complex targets.