Browsing by Author "Fan, Ping"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Comprehensive pharmacokinetic studies and oral bioavailability of two Mn porphyrin-based SOD mimics, MnTE-2-PyP5+ and MnTnHex-2-PyP5+.(Free radical biology & medicine, 2013-05) Weitner, Tin; Kos, Ivan; Sheng, Huaxin; Tovmasyan, Artak; Reboucas, Julio S; Fan, Ping; Warner, David S; Vujaskovic, Zeljko; Batinic-Haberle, Ines; Spasojevic, IvanThe cationic, ortho Mn(III) N-alkylpyridylporphyrins (alkyl=ethyl, E, and n-hexyl, nHex) MnTE-2-PyP(5+) (AEOL10113, FBC-007) and MnTnHex-2-PyP(5+) have proven efficacious in numerous in vivo animal models of diseases having oxidative stress in common. The remarkable therapeutic efficacy observed is due to their: (1) ability to catalytically remove O2(•-) and ONOO(-) and other reactive species; (2) ability to modulate redox-based signaling pathways; (3) accumulation within critical cellular compartments, i.e., mitochondria; and (4) ability to cross the blood-brain barrier. The similar redox activities of both compounds are related to the similar electronic and electrostatic environments around the metal active sites, whereas their different bioavailabilities are presumably influenced by the differences in lipophilicity, bulkiness, and shape. Both porphyrins are water soluble, but MnTnHex-2-PyP(5+) is approximately 4 orders of magnitude more lipophilic than MnTE-2-PyP(5+), which should positively affect its ability to pass through biological membranes, making it more efficacious in vivo at lower doses. To gain insight into the in vivo tissue distribution of Mn porphyrins and its impact upon their therapeutic efficacy and mechanistic aspects of action, as well as to provide data that would ensure proper dosing regimens, we conducted comprehensive pharmacokinetic (PK) studies for 24h after single-dose drug administration. The porphyrins were administered intravenously (iv), intraperitoneally (ip), and via oral gavage at the following doses: 10mg/kg MnTE-2-PyP(5+) and 0.5 or 2mg/kg MnTnHex-2-PyP(5+). Drug levels in plasma and various organs (liver, kidney, spleen, heart, lung, brain) were determined and PK parameters calculated (Cmax, C24h, tmax, and AUC). Regardless of high water solubility and pentacationic charge of these Mn porphyrins, they are orally available. The oral availability (based on plasma AUCoral/AUCiv) is 23% for MnTE-2-PyP(5+) and 21% for MnTnHex-2-PyP(5+). Despite the fivefold lower dose administered, the AUC values for liver, heart, and spleen are higher for MnTnHex-2-PyP(5+) than for MnTE-2-PyP(5+) (and comparable for other organs), clearly demonstrating the better tissue penetration and tissue retention of the more lipophilic MnTnHex-2-PyP(5+).Item Open Access Enhanced Drug Delivery to the Skin Using Liposomes.(Plastic and reconstructive surgery. Global open, 2018-07-09) Blueschke, Gert; Boico, Alina; Negussie, Ayele H; Yarmolenko, Pavel; Wood, Bradford J; Spasojevic, Ivan; Fan, Ping; Erdmann, Detlev; Schroeder, Thies; Sauerbier, Michael; Klitzman, BruceEnhancing drug delivery to the skin has importance in many therapeutic strategies. In particular, the outcome in vascularized composite allotransplantation mainly depends on systemic immunosuppression to prevent and treat episodes of transplant rejection. However, the side effects of systemic immunosuppression may introduce substantial risk to the patient and are weighed against the expected benefits. Successful enhancement of delivery of immunosuppressive agents to the most immunogenic tissues would allow for a reduction in systemic doses, thereby minimizing side effects. Nanoparticle-assisted transport by low temperature-sensitive liposomes (LTSLs) has shown some benefit in anticancer therapy. Our goal was to test whether delivery of a marker agent to the skin could be selectively enhanced.In an in vivo model, LTSLs containing doxorubicin (dox) as a marker were administered intravenously to rats that were exposed locally to mild hyperthermia. Skin samples of the hyperthermia treated hind limb were compared with skin of the contralateral normothermia hind limb. Tissue content of dox was quantified both via high-performance liquid chromatography and via histology in skin and liver.The concentration of dox in hyperthermia-treated skin was significantly elevated over both normothermic skin and liver. (P < 0.02).We show here that delivery of therapeutics to the skin can be targeted and enhanced using LTSLs. Targeting drug delivery with this method may reduce the systemic toxicity seen in a systemic free-drug administration. Development of more hydrophilic immunosuppressants in the future would increase the applicability of this system in the treatment of rejection reactions in vascularized composite allotransplantation. The treatment of other skin condition might be another potential application.