Browsing by Author "Farris, Alton B"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Cultured thymus tissue implementation promotes donor-specific tolerance to allogeneic heart transplants.(JCI insight, 2020-04-30) Kwun, Jean; Li, Jie; Rouse, Clay; Park, Jae Berm; Farris, Alton B; Kuchibhatla, Maragatha; Turek, Joseph W; Knechtle, Stuart J; Kirk, Allan D; Markert, M LouiseEighty-six infants born without a thymus have been treated with allogeneic cultured thymus tissue implantation (CTTI). These infants, who lack T cells and are profoundly immunodeficient at birth, after CTTI from an unmatched donor develop genetically-recipient T cells that are tolerant to both their own major histocompatibility antigens and those of the donor. We tested use of CTTI with the goal of inducing tolerance to unmatched heart transplants in immunocompetent rats. We thymectomized and T cell depleted Lewis rats. The rats were then given Lewis x Dark Agouti (LWxDA) CTTI under the kidney capsule and vascularized DA heart transplants in the abdomen. Cyclosporine was administered for 4 months. The control group did not receive CTTI. Recipients with CTTI showed repopulation of naïve and recent thymic emigrant CD4 T cells; controls had none. Recipients of CTTI did not reject DA cardiac allografts. Control animals did not reject DA grafts, due to lack of functional T cells. To confirm donor-specific unresponsiveness, MHC-mismatched Brown Norway (BN) hearts were transplanted 6 months after the initial DA heart transplant. LW rats with (LWxDA) CTTI rejected the third-party BN hearts (mean survival time 10d; n=5). Controls did not (n=5). CTTI recipients produced antibody against third party BN donor but not against the DA thymus donor demonstrating humoral donor-specific tolerance. Taken together, F1(LWxDA) CTTI given to Lewis rats resulted in specific tolerance to the allogeneic DA MHC expressed in the donor thymus with resulting long-term survival of DA heart transplants after withdrawal of all immunosuppression.Item Open Access Impact of Leukocyte Function-Associated Antigen-1 Blockade on Endogenous Allospecific T Cells to Multiple Minor Histocompatibility Antigen Mismatched Cardiac Allograft.(Transplantation, 2015-12) Kwun, Jean; Farris, Alton B; Song, Hyunjin; Mahle, William T; Burlingham, William J; Knechtle, Stuart JBACKGROUND: Blocking leukocyte function-associated antigen (LFA)-1 in organ transplant recipients prolongs allograft survival. However, the precise mechanisms underlying the therapeutic potential of LFA-1 blockade in preventing chronic rejection are not fully elucidated. Cardiac allograft vasculopathy (CAV) is the preeminent cause of late cardiac allograft failure characterized histologically by concentric intimal hyperplasia. METHODS: Anti-LFA-1 monoclonal antibody was used in a multiple minor antigen-mismatched, BALB.B (H-2B) to C57BL/6 (H-2B), cardiac allograft model. Endogenous donor-specific CD8 T cells were tracked down using major histocompatibility complex multimers against the immunodominant H4, H7, H13, H28, and H60 minor Ags. RESULTS: The LFA-1 blockade prevented acute rejection and preserved palpable beating quality with reduced CD8 T-cell graft infiltration. Interestingly, less CD8 T cell infiltration was secondary to reduction of T-cell expansion rather than less trafficking. The LFA-1 blockade significantly suppressed the clonal expansion of minor histocompatibility antigen-specific CD8 T cells during the expansion and contraction phase. The CAV development was evaluated with morphometric analysis at postoperation day 100. The LFA-1 blockade profoundly attenuated neointimal hyperplasia (61.6 vs 23.8%; P < 0.05), CAV-affected vessel number (55.3 vs 15.9%; P < 0.05), and myocardial fibrosis (grade 3.29 vs 1.8; P < 0.05). Finally, short-term LFA-1 blockade promoted long-term donor-specific regulation, which resulted in attenuated transplant arteriosclerosis. CONCLUSIONS: Taken together, LFA-1 blockade inhibits initial endogenous alloreactive T-cell expansion and induces more regulation. Such a mechanism supports a pulse tolerance induction strategy with anti-LFA-1 rather than long-term treatment.