Browsing by Author "Farsad, K"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Open Access Generation of high curvature membranes mediated by direct endophilin bilayer interactions.(J Cell Biol, 2001-10-15) Farsad, K; Ringstad, N; Takei, K; Floyd, SR; Rose, K; De Camilli, PEndophilin 1 is a presynaptically enriched protein which binds the GTPase dynamin and the polyphosphoinositide phosphatase synptojanin. Perturbation of endophilin function in cell-free systems and in a living synapse has implicated endophilin in endocytic vesicle budding (Ringstad, N., H. Gad, P. Low, G. Di Paolo, L. Brodin, O. Shupliakov, and P. De Camilli. 1999. Neuron. 24:143-154; Schmidt, A., M. Wolde, C. Thiele, W. Fest, H. Kratzin, A.V. Podtelejnikov, W. Witke, W.B. Huttner, and H.D. Soling. 1999. Nature. 401:133-141; Gad, H., N. Ringstad, P. Low, O. Kjaerulff, J. Gustafsson, M. Wenk, G. Di Paolo, Y. Nemoto, J. Crun, M.H. Ellisman, et al. 2000. Neuron. 27:301-312). Here, we show that purified endophilin can directly bind and evaginate lipid bilayers into narrow tubules similar in diameter to the neck of a clathrin-coated bud, providing new insight into the mechanisms through which endophilin may participate in membrane deformation and vesicle budding. This property of endophilin is independent of its putative lysophosphatydic acid acyl transferase activity, is mediated by its NH2-terminal region, and requires an amino acid stretch homologous to a corresponding region in amphiphysin, a protein previously shown to have similar effects on lipid bilayers (Takei, K., V.I. Slepnev, V. Haucke, and P. De Camilli. 1999. Nat. Cell Biol. 1:33-39). Endophilin cooligomerizes with dynamin rings on lipid tubules and inhibits dynamin's GTP-dependent vesiculating activity. Endophilin B, a protein with homology to endophilin 1, partially localizes to the Golgi complex and also deforms lipid bilayers into tubules, underscoring a potential role of endophilin family members in diverse tubulovesicular membrane-trafficking events in the cell.