Browsing by Author "Feenders, Gesa"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Restricted Global view of the functional molecular organization of the avian cerebrum: mirror images and functional columns.(J Comp Neurol, 2013-11) Jarvis, Erich D; Yu, Jing; Rivas, Miriam V; Horita, Haruhito; Feenders, Gesa; Whitney, Osceola; Jarvis, Syrus C; Jarvis, Electra R; Kubikova, Lubica; Puck, Ana EP; Siang-Bakshi, Connie; Martin, Suzanne; McElroy, Michael; Hara, Erina; Howard, Jason; Pfenning, Andreas; Mouritsen, Henrik; Chen, Chun-Chun; Wada, KazuhiroBased on quantitative cluster analyses of 52 constitutively expressed or behaviorally regulated genes in 23 brain regions, we present a global view of telencephalic organization of birds. The patterns of constitutively expressed genes revealed a partial mirror image organization of three major cell populations that wrap above, around, and below the ventricle and adjacent lamina through the mesopallium. The patterns of behaviorally regulated genes revealed functional columns of activation across boundaries of these cell populations, reminiscent of columns through layers of the mammalian cortex. The avian functionally regulated columns were of two types: those above the ventricle and associated mesopallial lamina, formed by our revised dorsal mesopallium, hyperpallium, and intercalated hyperpallium; and those below the ventricle, formed by our revised ventral mesopallium, nidopallium, and intercalated nidopallium. Based on these findings and known connectivity, we propose that the avian pallium has four major cell populations similar to those in mammalian cortex and some parts of the amygdala: 1) a primary sensory input population (intercalated pallium); 2) a secondary intrapallial population (nidopallium/hyperpallium); 3) a tertiary intrapallial population (mesopallium); and 4) a quaternary output population (the arcopallium). Each population contributes portions to columns that control different sensory or motor systems. We suggest that this organization of cell groups forms by expansion of contiguous developmental cell domains that wrap around the lateral ventricle and its extension through the middle of the mesopallium. We believe that the position of the lateral ventricle and its associated mesopallium lamina has resulted in a conceptual barrier to recognizing related cell groups across its border, thereby confounding our understanding of homologies with mammals.Item Open Access Lateralized activation of Cluster N in the brains of migratory songbirds.(Eur J Neurosci, 2007-02) Liedvogel, Miriam; Feenders, Gesa; Wada, Kazuhiro; Troje, Nikolaus F; Jarvis, Erich D; Mouritsen, HenrikCluster N is a cluster of forebrain regions found in night-migratory songbirds that shows high activation of activity-dependent gene expression during night-time vision. We have suggested that Cluster N may function as a specialized night-vision area in night-migratory birds and that it may be involved in processing light-mediated magnetic compass information. Here, we investigated these ideas. We found a significant lateralized dominance of Cluster N activation in the right hemisphere of European robins (Erithacus rubecula). Activation predominantly originated from the contralateral (left) eye. Garden warblers (Sylvia borin) tested under different magnetic field conditions and under monochromatic red light did not show significant differences in Cluster N activation. In the fairly sedentary Sardinian warbler (Sylvia melanocephala), which belongs to the same phyolgenetic clade, Cluster N showed prominent activation levels, similar to that observed in garden warblers and European robins. Thus, it seems that Cluster N activation occurs at night in all species within predominantly migratory groups of birds, probably because such birds have the capability of switching between migratory and sedentary life styles. The activation studies suggest that although Cluster N is lateralized, as is the dependence on magnetic compass orientation, either Cluster N is not involved in magnetic processing or the magnetic modulations of the primary visual signal, forming the basis for the currently supported light-dependent magnetic compass mechanism, are relatively small such that activity-dependent gene expression changes are not sensitive enough to pick them up.Item Open Access Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin.(PLoS One, 2008-03-12) Feenders, Gesa; Liedvogel, Miriam; Rivas, Miriam; Zapka, Manuela; Horita, Haruhito; Hara, Erina; Wada, Kazuhiro; Mouritsen, Henrik; Jarvis, Erich DVocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor pathway that controls movement.Item Open Access Night-vision brain area in migratory songbirds.(Proc Natl Acad Sci U S A, 2005-06-07) Mouritsen, Henrik; Feenders, Gesa; Liedvogel, Miriam; Wada, Kazuhiro; Jarvis, Erich DTwice each year, millions of night-migratory songbirds migrate thousands of kilometers. To find their way, they must process and integrate spatiotemporal information from a variety of cues including the Earth's magnetic field and the night-time starry sky. By using sensory-driven gene expression, we discovered that night-migratory songbirds possess a tight cluster of brain regions highly active only during night vision. This cluster, here named "cluster N," is located at the dorsal surface of the brain and is adjacent to a known visual pathway. In contrast, neuronal activation of cluster N was not increased in nonmigratory birds during the night, and it disappeared in migrants when both eyes were covered. We suggest that in night-migratory songbirds cluster N is involved in enhanced night vision, and that it could be integrating vision-mediated magnetic and/or star compass information for night-time navigation. Our findings thus represent an anatomical and functional demonstration of a specific night-vision brain area.