Browsing by Author "Frasch, Martin G"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Efficient Fetal-Maternal ECG Signal Separation from Two Channel Maternal Abdominal ECG via Diffusion-Based Channel Selection.(Front Physiol, 2017) Li, Ruilin; Frasch, Martin G; Wu, Hau-TiengThere is a need for affordable, widely deployable maternal-fetal ECG monitors to improve maternal and fetal health during pregnancy and delivery. Based on the diffusion-based channel selection, here we present the mathematical formalism and clinical validation of an algorithm capable of accurate separation of maternal and fetal ECG from a two channel signal acquired over maternal abdomen. The proposed algorithm is the first algorithm, to the best of the authors' knowledge, focusing on the fetal ECG analysis based on two channel maternal abdominal ECG signal, and we apply it to two publicly available databases, the PhysioNet non-invasive fECG database (adfecgdb) and the 2013 PhysioNet/Computing in Cardiology Challenge (CinC2013), to validate the algorithm. The state-of-the-art results are achieved when compared with other available algorithms. Particularly, the F1 score for the R peak detection achieves 99.3% for the adfecgdb and 87.93% for the CinC2013, and the mean absolute error for the estimated R peak locations is 4.53 ms for the adfecgdb and 6.21 ms for the CinC2013. The method has the potential to be applied to other fetal cardiogenic signals, including cardiac doppler signals.Item Open Access Non-invasive biomarkers of fetal brain development reflecting prenatal stress: An integrative multi-scale multi-species perspective on data collection and analysis(Neuroscience & Biobehavioral Reviews, 2018-05) Frasch, Martin G; Lobmaier, Silvia M; Stampalija, Tamara; Desplats, Paula; Pallarés, María Eugenia; Pastor, Verónica; Brocco, Marcela A; Wu, Hau-Tieng; Schulkin, Jay; Herry, Christophe L; Seely, Andrew JE; Metz, Gerlinde AS; Louzoun, Yoram; Antonelli, Marta C© 2018 Elsevier Ltd Prenatal stress (PS) impacts early postnatal behavioural and cognitive development. This process of ‘fetal programming’ is mediated by the effects of the prenatal experience on the developing hypothalamic–pituitary–adrenal (HPA) axis and autonomic nervous system (ANS). We derive a multi-scale multi-species approach to devising preclinical and clinical studies to identify early non-invasively available pre- and postnatal biomarkers of PS. The multiple scales include brain epigenome, metabolome, microbiome and the ANS activity gauged via an array of advanced non-invasively obtainable properties of fetal heart rate fluctuations. The proposed framework has the potential to reveal mechanistic links between maternal stress during pregnancy and changes across these physiological scales. Such biomarkers may hence be useful as early and non-invasive predictors of neurodevelopmental trajectories influenced by the PS as well as follow-up indicators of success of therapeutic interventions to correct such altered neurodevelopmental trajectories. PS studies must be conducted on multiple scales derived from concerted observations in multiple animal models and human cohorts performed in an interactive and iterative manner and deploying machine learning for data synthesis, identification and validation of the best non-invasive detection and follow-up biomarkers, a prerequisite for designing effective therapeutic interventions.