Browsing by Author "Frenkel, Daan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Dynamical heterogeneity in a glass-forming ideal gas.(Phys Rev E Stat Nonlin Soft Matter Phys, 2008-07) Charbonneau, Patrick; Das, Chinmay; Frenkel, DaanWe conduct a numerical study of the dynamical behavior of a system of three-dimensional "crosses," particles that consist of three mutually perpendicular line segments of length sigma rigidly joined at their midpoints. In an earlier study [W. van Ketel, Phys. Rev. Lett. 94, 135703 (2005)] we showed that this model has the structural properties of an ideal gas, yet the dynamical properties of a strong glass former. In the present paper we report an extensive study of the dynamical heterogeneities that appear in this system in the regime where glassy behavior sets in. On the one hand, we find that the propensity of a particle to diffuse is determined by the structure of its local environment. The local density around mobile particles is significantly less than the average density, but there is little clustering of mobile particles, and the clusters observed tend to be small. On the other hand, dynamical susceptibility results indicate that a large dynamical length scale develops even at moderate densities. This suggests that propensity and other mobility measures are an incomplete measure of the dynamical length scales in this system.Item Open Access Phase coexistence of cluster crystals: Beyond the gibbs phase rule(Physical Review Letters, 2007-12-07) Mladek, Bianca M; Charbonneau, Patrick; Frenkel, DaanWe report a study of the phase behavior of multiple-occupancy crystals through simulation. We argue that in order to reproduce the equilibrium behavior of such crystals, it is essential to treat the number of lattice sites as a constraining thermodynamic variable. The resulting free-energy calculations thus differ considerably from schemes used for single-occupancy lattices. Using our approach, we obtain the phase diagram and the bulk modulus for a generalized exponential model that forms cluster crystals at high densities. We compare the simulation results with existing theoretical predictions. We also identify two types of density fluctuations that can lead to two sound modes and evaluate the corresponding elastic constants. © 2007 The American Physical Society.