Browsing by Author "Fruge, Andrew D"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Acute and chronic effects of resistance training on skeletal muscle markers of mitochondrial remodeling in older adults(Physiological Reports, 2020-08) Mesquita, Paulo HC; Lamb, Donald A; Parry, Hailey A; Moore, Johnathon H; Smith, Morgan A; Vann, Christopher G; Osburn, Shelby C; Fox, Carlton D; Ruple, Bradley A; Huggins, Kevin W; Fruge, Andrew D; Young, Kaelin C; Kavazis, Andreas N; Roberts, Michael DItem Open Access Effects of Resistance Training on the Redox Status of Skeletal Muscle in Older Adults(Antioxidants) Mesquita, Paulo HC; Lamb, Donald A; Godwin, Joshua S; Osburn, Shelby C; Ruple, Bradley A; Moore, Johnathon H; Vann, Christopher G; Huggins, Kevin W; Fruge, Andrew D; Young, Kaelin C; Kavazis, Andreas N; Roberts, Michael DThe aim of this study was to investigate the effects of resistance training (RT) on the redox status of skeletal muscle in older adults. Thirteen males aged 64 ± 9 years performed full-body RT 2x/week for 6 weeks. Muscle biopsies were obtained from the vastus lateralis prior to and following RT. The mRNA, protein, and enzymatic activity levels of various endogenous antioxidants were determined. In addition, skeletal muscle 4-hydroxynonenal and protein carbonyls were determined as markers of oxidative damage. Protein levels of heat shock proteins (HSPs) were also quantified. RT increased mRNA levels of all assayed antioxidant genes, albeit protein levels either did not change or decreased. RT increased total antioxidant capacity, catalase, and glutathione reductase activities, and decreased glutathione peroxidase activity. Lipid peroxidation also decreased and HSP60 protein increased following RT. In summary, 6 weeks of RT decreased oxidative damage and increased antioxidant enzyme activities. Our results suggest the older adult responses to RT involve multi-level (transcriptional, post-transcriptional, and post-translational) control of the redox status of skeletal muscle.Item Open Access Resistance training increases muscle NAD+ and NADH concentrations as well as NAMPT protein levels and global sirtuin activity in middle-aged, overweight, untrained individuals(Aging, 2020-05-05) Lamb, Donald A; Moore, Johnathon H; Mesquita, Paulo Henrique Caldeira; Smith, Morgan A; Vann, Christopher G; Osburn, Shelby C; Fox, Carlton D; Lopez, Hector L; Ziegenfuss, Tim N; Huggins, Kevin W; Goodlett, Michael D; Fruge, Andrew D; Kavazis, Andreas N; Young, Kaelin C; Roberts, Michael DItem Open Access The effects of resistance training with or without peanut protein supplementation on skeletal muscle and strength adaptations in older individuals(Journal of the International Society of Sports Nutrition, 2020-01-03) Lamb, Donald A; Moore, Johnathon H; Smith, Morgan A; Vann, Christopher G; Osburn, Shelby C; Ruple, Bradley A; Fox, Carlton D; Smith, Kristen S; Altonji, Olivia M; Power, Zade M; Cerovsky, Annsley E; Ross, C Owen; Cao, Andy T; Goodlett, Michael D; Huggins, Kevin W; Fruge, Andrew D; Young, Kaelin C; Roberts, Michael D