Browsing by Author "Fu, Wanyi"
Results Per Page
Sort Options
Item Open Access A comparison of COVID-19 and imaging radiation risk in clinical patient populations.(J Radiol Prot, 2020-10-07) Ria, Francesco; Fu, Wanyi; Chalian, Hamid; Abadi, Ehsan; Segars, Paul W; Fricks, Rafael; Khoshpouri, Pegah; Samei, EhsanOBJECTIVE: The outbreak of coronavirus SARS-COV2 affected more than 180 countries necessitating fast and accurate diagnostic tools. Reverse transcriptase polymerase chain reaction (RT-PCR) has been identified as a gold standard test with Chest CT and Chest Radiography showing promising results as well. However, radiological solutions have not been used extensively for the diagnosis of COVID-19 disease, partly due to radiation risk. This study aimed to provide quantitative comparison of imaging radiation risk versus COVID risk. METHODS: The analysis was performed in terms of mortality rate per age group. COVID-19 mortality was extracted from epidemiological data across 299,004 patients published by ISS-Integrated surveillance of COVID-19 in Italy. For radiological risk, the study considered 659 Chest CT performed in adult patients. Organ doses were estimated using a Monte Carlo method and then used to calculate Risk Index that was converted into an upper bound for related mortality rate following NCI-SEER data. RESULTS: COVID-19 mortality showed a rapid rise for ages >30 years old (min:0.30%; max:30.20%), whereas only 1 death was reported in the analyzed patient cohort for ages <20 years old. The rates decreased for radiation risk across age groups. The median mortality rate across all ages for Chest-CT and Chest-Radiography were 0.007% (min:0.005%; max:0.011%) and 0.0003% (min:0.0002%; max:0.0004%), respectively. CONCLUSIONS: COVID-19, Chest Radiography, and Chest CT mortality rates showed different magnitudes and trends across age groups. In higher ages, the risk of COVID-19 far outweighs that of radiological exams. Based on risk comparison alone, Chest Radiography and CT for COVID-19 care is justified for patients older than 20 and 30 years old, respectively. Notwithstanding other aspects of diagnosis, the present results capture a component of risk consideration associated with the use of imaging for COVID. Once integrated with other diagnostic factors, they may help inform better management of the pandemic.Item Open Access A patient-informed approach to predict iodinated-contrast media enhancement in the liver(European Journal of Radiology, 2022-10) Setiawan, Hananiel; Chen, Chaofan; Abadi, Ehsan; Fu, Wanyi; Marin, Daniele; Ria, Francesco; Samei, EhsanItem Open Access Clinical Decision Making in CT: Risk Assessment Comparison Across 12 Risk Metrics in Patient Populations(Journal of Medical Physics, 2020-06-30) Ria, Francesco; Fu, Wanyi; Hoye, Jocelyn; Segars, William; Kapadia, Anuj; Samei, EhsanPurpose The Medical Physics 3.0 initiative aims to enhance direct physicist involvement in clinical decision making to improve patient care. In this involvement, it is crucial to achieve effective and patient-specific radiation risk assessment. CT risk characterization presents a variety of metrics, many of which used as radiation risk surrogates; some are related to the device output (CTDI), whereas others include patient organ risk-, age-, and gender-factors (Effective Dose, Risk Index). It is unclear how different metrics can accurately reflect the radiological risk. This study compared how twelve metrics characterize risk across CT patient populations to inform effective clinical decision making in radiology. Methods This IRB-approved study included 1394 adult CT examinations (abdominopelvic and chest). Organ doses were calculated using Monte Carlo methods. The following risk surrogate metrics were calculated: CTDIvol, DLP, SSDE, DLP-based Effective Dose (EDk), organ-dose-based ED (EDOD), dose to defining organ (stomach- and lungs-ODD), organ-dose-based Risk Index (RI), and 20 y.o. patient Risk Index (RIr). Furthermore, ODD,0, ED0, and RI0 were calculated for a reference patient (ICRP 110). Lastly, an adjusted ED (ED') was computed as the product of RI/RIr and EDOD. A linear regression was applied to assess each metric’s dependency to RI, assumed to be the closest patient risk surrogate. The normalized-slope (nS) and a Minimum Risk Detectability Index (MRDI=RMSE/slope) were calculated for each fit. Results The analysis reported significant differences between the metrics. ED’ showed the best concordance with RI in terms of nS and MRDI. Across all metrics and protocols, nS ranged between 0.37(SSDE) to 1.29(RI0); MRDI ranged between 39.11(EDk) to 1.10(ED’) cancers per 105 patients per 0.1Gy. Conclusion Radiation risk characterization in CT populations is strongly affected by the index used to describe it. When involved in clinical decisions, medical physicists should exercise care in ascribing an implicit risk to factors that do not closely reflect risk.Item Open Access Comparison of 12 surrogates to characterize CT radiation risk across a clinical population.(European radiology, 2021-02-23) Ria, Francesco; Fu, Wanyi; Hoye, Jocelyn; Segars, W Paul; Kapadia, Anuj J; Samei, EhsanObjectives
Quantifying radiation burden is essential for justification, optimization, and personalization of CT procedures and can be characterized by a variety of risk surrogates inducing different radiological risk reflections. This study compared how twelve such metrics can characterize risk across patient populations.Methods
This study included 1394 CT examinations (abdominopelvic and chest). Organ doses were calculated using Monte Carlo methods. The following risk surrogates were considered: volume computed tomography dose index (CTDIvol), dose-length product (DLP), size-specific dose estimate (SSDE), DLP-based effective dose (EDk ), dose to a defining organ (ODD), effective dose and risk index based on organ doses (EDOD, RI), and risk index for a 20-year-old patient (RIrp). The last three metrics were also calculated for a reference ICRP-110 model (ODD,0, ED0, and RI0). Lastly, motivated by the ICRP, an adjusted-effective dose was calculated as [Formula: see text]. A linear regression was applied to assess each metric's dependency on RI. The results were characterized in terms of risk sensitivity index (RSI) and risk differentiability index (RDI).Results
The analysis reported significant differences between the metrics with EDr showing the best concordance with RI in terms of RSI and RDI. Across all metrics and protocols, RSI ranged between 0.37 (SSDE) and 1.29 (RI0); RDI ranged between 0.39 (EDk) and 0.01 (EDr) cancers × 103patients × 100 mGy.Conclusion
Different risk surrogates lead to different population risk characterizations. EDr exhibited a close characterization of population risk, also showing the best differentiability. Care should be exercised in drawing risk predictions from unrepresentative risk metrics applied to a population.Key points
• Radiation risk characterization in CT populations is strongly affected by the surrogate used to describe it. • Different risk surrogates can lead to different characterization of population risk. • Healthcare professionals should exercise care in ascribing an implicit risk to factors that do not closely reflect risk.Item Open Access Evaluation of the Does Reduction Potential Using a Breast Positioning Technique for Organ-based Tube Current Modulated CT Examinations(2016) Fu, WanyiPurpose: The purpose of this work was to investigate the breast dose saving potential of a breast positioning technique (BP) for thoracic CT examinations with organ-based tube current modulation (OTCM).
Methods: The study included 13 female patient models (XCAT, age range: 27-65 y.o., weight range: 52 to 105.8 kg). Each model was modified to simulate three breast sizes in standard supine geometry. The modeled breasts were further deformed, emulating a BP that would constrain the breasts within 120° anterior tube current (mA) reduction zone. The tube current value of the CT examination was modeled using an attenuation-based program, which reduces the radiation dose to 20% in the anterior region with a corresponding increase to the posterior region. A validated Monte Carlo program was used to estimate organ doses with a typical clinical system (SOMATOM Definition Flash, Siemens Healthcare). The simulated organ doses and organ doses normalized by CTDIvol were compared between attenuation-based tube current modulation (ATCM), OTCM, and OTCM with BP (OTCMBP).
Results: On average, compared to ATCM, OTCM reduced the breast dose by 19.3±4.5%, whereas OTCMBP reduced breast dose by 36.6±6.9% (an additional 21.3±7.3%). The dose saving of OTCMBP was more significant for larger breasts (on average 32, 38, and 44% reduction for 0.5, 1.5, and 2.5 kg breasts, respectively). Compared to ATCM, OTCMBP also reduced thymus and heart dose by 12.1 ± 6.3% and 13.1 ± 5.4%, respectively.
Conclusions: In thoracic CT examinations, OTCM with a breast positioning technique can markedly reduce unnecessary exposure to the radiosensitive organs in the anterior chest wall, specifically breast tissue. The breast dose reduction is more notable for women with larger breasts.
Item Open Access Modeling Patient-Informed Liver Contrast Perfusion in Contrast-enhanced Computed Tomography.(J Comput Assist Tomogr, 2020-11) Setiawan, Hananiel; Ria, Francesco; Abadi, Ehsan; Fu, Wanyi; Smith, Taylor B; Samei, EhsanOBJECTIVE: To determine the correlation between patient attributes and contrast enhancement in liver parenchyma and demonstrate the potential for patient-informed prediction and optimization of contrast enhancement in liver imaging. METHODS: The study included 418 chest/abdomen/pelvis computed tomography scans, with 75% to 25% training-testing split. Two regression models were built to predict liver parenchyma contrast enhancement over time: first model (model A) utilized patient attributes (height, weight, sex, age, bolus volume, injection rate, scan times, body mass index, lean body mass) and bolus-tracking data. A second model (model B) only used the patient attributes. Pearson coefficient was used to assess predictive accuracy. RESULTS: Weight- and height-related features were found to be statistically significant predictors (P < 0.05), weight being the strongest. Of the 2 models, model A (r = 0.75) showed greater accuracy than model B (r = 0.42). CONCLUSIONS: Patient attributes can be used to build prediction model for liver parenchyma contrast enhancement. The model can have utility in optimization and improved consistency in contrast-enhanced liver imaging.Item Open Access Organ doses from CT localizer radiographs: Development, validation, and application of a Monte Carlo estimation technique(MEDICAL PHYSICS, 2019-11-01) Hoye, Jocelyn; Sharma, Shobhit; Zhang, Yakun; Fu, Wanyi; Ria, Francesco; Kapadia, Anuj; Segars, W Paul; Wilson, Joshua; Samei, EhsanItem Open Access Organ Doses from CT Localizer Radiographs: Development, Validation, and Application of a Monte Carlo Estimation Technique.(Medical physics, 2019-08-23) Hoye, Jocelyn; Sharma, Shobhit; Zhang, Yakun; Fu, Wanyi; Ria, Francesco; Kapadia, Anuj; Segars, W Paul; Wilson, Joshua; Samei, EhsanPURPOSE:The purpose of this study was to simulate and validate organ doses from different CT localizer radiograph geometries using Monte Carlo methods for a population of patients. METHODS:A Monte Carlo method was developed to estimate organ doses from CT localizer radiographs using PENELOPE. The method was validated by comparing dosimetry estimates with measurements using an anthropomorphic phantom imbedded with thermoluminescent dosimeters (TLDs) scanned on a commercial CT system (Siemens SOMATOM Flash). The Monte Carlo simulation platform was then applied to conduct a population study with fifty-seven adult computational phantoms (XCAT). In the population study, clinically relevant chest localizer protocols were simulated with the x-ray tube in anterior-posterior (AP), right lateral, and PA positions. Mean organ doses and associated standard deviations (in mGy) were then estimated for all simulations. The obtained organ doses were studied as a function of patient chest diameter. Organ doses for breast and lung were compared across different views and represented as a percentage of organ doses from rotational CT scans. RESULTS:The validation study showed an agreement between the Monte Carlo and physical TLD measurements with a maximum percent difference of 15.5% and a mean difference of 3.5% across all organs. The XCAT population study showed that breast dose from AP localizers was the highest with a mean value of 0.24 mGy across patients, while the lung dose was relatively consistent across different localizer geometries. The organ dose estimates were found to vary across the patient population, partially explained by the changes in the patient chest diameter. The average effective dose was 0.18 mGy for AP, 0.09 mGy for lateral, and 0.08 mGy for PA localizer. CONCLUSION:A platform to estimate organ doses in CT localizer scans using Monte Carlo methods was implemented and validated based on comparison with physical dose measurements. The simulation platform was applied to a virtual patient population, where the localizer organ doses were found to range within 0.4-8.6% of corresponding organ doses for a typical CT scan, 0.2-3.3% of organ doses for a CT pulmonary angiography scan, and 1.1-20.8% of organ doses for a low dose lung cancer screening scan.Item Open Access Patient-informed modelling of hepatic contrast dynamics in contrast-enhanced CT imaging(Medical Imaging 2020: Physics of Medical Imaging, 2020-03-16) Setiawan, Hananiel; Ria, Francesco; Abadi, Ehsan; Fu, Wanyi; Smith, Taylor; Samei, EhsanPURPOSE Iodinated contrast agents are commonly used in CT imaging to enhance tissue contrast. Consistency in contrast enhancement (CE) is critical in radiological diagnosis. Contrast material circulation in individual patients is affected by factors such as patient body habitus and anatomy leading to significant variability in organ contrast enhancement, image quality, and dose. Toward the goal of improving CE consistency in clinical populations, in this work we developed a contrast dynamics model to predict CT HU enhancement of liver parenchyma in abdominopelvic CE CT scans. METHOD AND MATERIALS This study included 700 adult abdominopelvic contrast CT exams performed in 2014-2018 using two scanner models from two vendors. Each CT image was segmented using a deep learning-based segmentation algorithm and the hepatic parenchyma HU values were acquired from the segmentations. A two-layer neural network-based algorithm was used to identify the relationship between patient attributes (height, weight, BMI, age, sex), scan parameters (slice thickness, scanner model), contrast injection protocols (bolus volume, injection-to-scan wait time), and the liver HU CE. We randomly selected 60% studies for training, 10% validation, and 30% for testing the accuracy. The training output was the extracted HU values. The goodness-of-fit of the model was evaluated in terms of R^2, Adjusted R^2, Mean Absolute Error (MAE), and Mean Squared Error (MSE) between the model prediction and ground truth. In addition, the generalizability of the model was evaluated by comparing the R^2 in the training data (leave-one-out validation) and the testing data. RESULTS This preliminary model has an 0.51 R^2, 0.40 adjusted R^2, 10.0 HU MAE, 159.1 HU MSE, 0.6±12.8 HU Mean Error, and 2.5 HU Median Error on test data. For training data, the model has 0.59 R^2, 0.56 Adjusted R^2, and 0.5 predicted R^2. The close R^2 between testing and training data results indicate a reasonable generalizability. CONCLUSION Results showed considerable predictability of liver CE from patient attributes, scanning parameters, and contrast administration protocol. We envision to expand the model to include other major organs toward a comprehensive predictive model. CLINICAL RELEVANCE/APPLICATION A contrast dynamics model can be an essential tool to personalize contrast-enhanced CT protocol and to improve the consistency of contrast enhancement across different patients in diagnostics imaging.Item Open Access Patient-Informed Organ Dose Estimation in Clinical CT: Implementation and Effective Dose Assessment in 1048 Clinical Patients.(AJR. American journal of roentgenology, 2021-01-21) Fu, Wanyi; Ria, Francesco; Segars, William Paul; Choudhury, Kingshuk Roy; Wilson, Joshua M; Kapadia, Anuj J; Samei, EhsanOBJECTIVE. The purpose of this study is to comprehensively implement a patient-informed organ dose monitoring framework for clinical CT and compare the effective dose (ED) according to the patient-informed organ dose with ED according to the dose-length product (DLP) in 1048 patients. MATERIALS AND METHODS. Organ doses for a given examination are computed by matching the topogram to a computational phantom from a library of anthropomorphic phantoms and scaling the fixed tube current dose coefficients by the examination volume CT dose index (CTDIvol) and the tube-current modulation using a previously validated convolution-based technique. In this study, the library was expanded to 58 adult, 56 pediatric, five pregnant, and 12 International Commission on Radiological Protection (ICRP) reference models, and the technique was extended to include multiple protocols, a bias correction, and uncertainty estimates. The method was implemented in a clinical monitoring system to estimate organ dose and organ dose-based ED for 647 abdomen-pelvis and 401 chest examinations, which were compared with DLP-based ED using a t test. RESULTS. For the majority of the organs, the maximum errors in organ dose estimation were 18% and 8%, averaged across all protocols, without and with bias correction, respectively. For the patient examinations, DLP-based ED was significantly different from organ dose-based ED by as much as 190.9% and 234.7% for chest and abdomen-pelvis scans, respectively (mean, 9.0% and 24.3%). The differences were statistically significant (p < .001) and exhibited overestimation for larger-sized patients and underestimation for smaller-sized patients. CONCLUSION. A patient-informed organ dose estimation framework was comprehensively implemented applicable to clinical imaging of adult, pediatric, and pregnant patients. Compared with organ dose-based ED, DLP-based ED may overestimate effective dose for larger-sized patients and underestimate it for smaller-sized patients.Item Open Access Patient-specific organ-based dosimetry and image quality estimation in clinical computed tomography(2021) Fu, WanyiThe purpose of this dissertation was to investigate and demonstrate the feasibility of patient organ based radiation dose and image quality assessment in clinical computed tomography (CT). The clinical wide usage of CT necessitates its safety and quality monitoring in a patient-centric and precise manner. This dissertation enabled this goal by developing novel image assessment frameworks and demonstrating their clinical utilities in population studies, specifically in three parts: 1) developing and clinically implementing a patient-informed radiation dose quantification framework, 2) developing a patient-specific radiation dose quantification framework, and 3) developing and clinically utilizing a patient-specific organ-based dose and image quality assessment framework.Specifically, in part one, a patient-informed organ dose estimation framework was developed and implemented for clinical imaging of adults, pediatric, and pregnant patients across a comprehensive range of scan protocols. The framework parametrically matches the patient to an anatomical phantom and quantifies the radiation field using a regional volume CT dose index (CTDIvol) based approach. The estimation further incorporates an accuracy model to calibrate bias and quantify uncertainties. The framework was clinically implemented to investigate the differences between organ dose based effective dose with dose length product based effective dose, which is non-patient, scanner output derived, for 1048 patients. The results show the organ-based measurements are significantly different from the non-patient based, especially for patients with relatively small or large sizes. In part two, a patient-specific approach, in contrast to the patient-informed approach, in organ dose assessment clinical CT was explored. A novel framework, iPhantom, was developed to automatically generate patient-specific phantoms (i.e., anatomical digital-twins) based on CT images. Specifically, anchor organs with relatively distinguishable contrast (i.e., lungs, bones) are segmented using a deep learning-based multi-organ segmentation model. Other radiosensitive organs that are challenging to segment (i.e., intestines) are filled in from an anatomical template using affine and diffeomorphic registration. The framework is combined with a Monte Carlo CT simulation program and systematically validated for its utility to patient-specific organ dose estimation. The results demonstrate that the framework, for the first time, enables sufficient and automated patient-specific organ dose assessment in clinical CT. In part three, a comprehensive clinical image assessment framework was developed integrating the patient-specific organ dosimetry and in vivo image quality quantification. The framework was used to demonstrate the necessities of organ-based measurements in contrast to their commonly used non-organ-based counterparts; and to investigate the relationships of dose, image quality, and patient sizes for exams scanned with different parameters among 9801 clinical CT images. The results show that, in general, compared to the organ based, non-organ-based dose and quality metrics significantly misrepresent patient-specific values. The relationships between the two types of quantities in patient dose, image quality, and size are weak and vary substantially for different scan parameters. This study implies that although it is commonly assumed that increased dose results in superior image quality, image quality and dose at the level of patient may need to be optimized semi-independently from one another. In conclusion, this dissertation demonstrated the necessity and feasibility of automated and patient-specific safety and quality assessment in clinical CT, paving the way for patient-centric monitoring and large-scale analysis for personalized precision medicine.