Browsing by Author "Futoma, Joseph"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access An Improved Multi-Output Gaussian Process RNN with Real-Time Validation for Early Sepsis Detection(2017-08-19) Futoma, Joseph; Hariharan, Sanjay; Sendak, Mark; Brajer, Nathan; Clement, Meredith; Bedoya, Armando; O'Brien, Cara; Heller, KatherineSepsis is a poorly understood and potentially life-threatening complication that can occur as a result of infection. Early detection and treatment improves patient outcomes, and as such it poses an important challenge in medicine. In this work, we develop a flexible classifier that leverages streaming lab results, vitals, and medications to predict sepsis before it occurs. We model patient clinical time series with multi-output Gaussian processes, maintaining uncertainty about the physiological state of a patient while also imputing missing values. The mean function takes into account the effects of medications administered on the trajectories of the physiological variables. Latent function values from the Gaussian process are then fed into a deep recurrent neural network to classify patient encounters as septic or not, and the overall model is trained end-to-end using back-propagation. We train and validate our model on a large dataset of 18 months of heterogeneous inpatient stays from the Duke University Health System, and develop a new "real-time" validation scheme for simulating the performance of our model as it will actually be used. Our proposed method substantially outperforms clinical baselines, and improves on a previous related model for detecting sepsis. Our model's predictions will be displayed in a real-time analytics dashboard to be used by a sepsis rapid response team to help detect and improve treatment of sepsis.Item Open Access Machine learning for early detection of sepsis: an internal and temporal validation study.(JAMIA open, 2020-07) Bedoya, Armando D; Futoma, Joseph; Clement, Meredith E; Corey, Kristin; Brajer, Nathan; Lin, Anthony; Simons, Morgan G; Gao, Michael; Nichols, Marshall; Balu, Suresh; Heller, Katherine; Sendak, Mark; O'Brien, CaraObjective
Determine if deep learning detects sepsis earlier and more accurately than other models. To evaluate model performance using implementation-oriented metrics that simulate clinical practice.Materials and methods
We trained internally and temporally validated a deep learning model (multi-output Gaussian process and recurrent neural network [MGP-RNN]) to detect sepsis using encounters from adult hospitalized patients at a large tertiary academic center. Sepsis was defined as the presence of 2 or more systemic inflammatory response syndrome (SIRS) criteria, a blood culture order, and at least one element of end-organ failure. The training dataset included demographics, comorbidities, vital signs, medication administrations, and labs from October 1, 2014 to December 1, 2015, while the temporal validation dataset was from March 1, 2018 to August 31, 2018. Comparisons were made to 3 machine learning methods, random forest (RF), Cox regression (CR), and penalized logistic regression (PLR), and 3 clinical scores used to detect sepsis, SIRS, quick Sequential Organ Failure Assessment (qSOFA), and National Early Warning Score (NEWS). Traditional discrimination statistics such as the C-statistic as well as metrics aligned with operational implementation were assessed.Results
The training set and internal validation included 42 979 encounters, while the temporal validation set included 39 786 encounters. The C-statistic for predicting sepsis within 4 h of onset was 0.88 for the MGP-RNN compared to 0.836 for RF, 0.849 for CR, 0.822 for PLR, 0.756 for SIRS, 0.619 for NEWS, and 0.481 for qSOFA. MGP-RNN detected sepsis a median of 5 h in advance. Temporal validation assessment continued to show the MGP-RNN outperform all 7 clinical risk score and machine learning comparisons.Conclusions
We developed and validated a novel deep learning model to detect sepsis. Using our data elements and feature set, our modeling approach outperformed other machine learning methods and clinical scores.Item Open Access Major League Baseball and National Basketball Association regular season data by team(2014) Futoma, Joseph; McAlinn, KenichiroWith the rise of sports statistics, especially sabermetrics in baseball, statistics have proven crucial not only for managing teams and assessing player value, but also for forecasting team and individual performance. In this data expedition, we provided undergraduates with detailed information about each team from every NBA and MLB game during the 2010-2011 and 2013 seasons, respectively. For baseball, for each of the 2430 games we have 23 batting stats (e.g. hits, runs batted in, homeruns) and 23 pitching stats (e.g. strikeouts, runs allowed). For basketball, we have 20 stats (e.g. field goals, free throws, rebounds), for each of the 1230 games.