Browsing by Author "Gallant, A Ronald"
- Results Per Page
- Sort Options
Item Open Access A New Class of Stochastic Volatility Models with Jumps: Theory and Estimation(1999) Chernov, Mikhail; Gallant, A Ronald; Ghysels, Eric; Tauchen, GeorgeThe purpose of this paper is to propose a new class of jump diffusions which feature both stochastic volatility and random intensity jumps. Previous studies have focused primarily on pure jump processes with constant intensity and log-normal jumps or constant jump intensity combined with a one factor stochastic volatility model. We introduce several generalizations which can better accommodate several empirical features of returns data. In their most general form we introduce a class of processes which nests jump-diffusions previously considered in empirical work and includes the affine class of random intensity models studied by Bates (1998) and Duffie, Pan and Singleton (1998) but also allows for non-affine random intensity jump components. We attain the generality of our specification through a generic Levy process characterization of the jump component. The processes we introduce share the desirable feature with the affine class that they yield analytically tractable and explicit option pricing formula. The non-affine class of processes we study include specifications where the random intensity jump component depends on the size of the previous jump which represent an alternative to affine random intensity jump processes which feature correlation between the stochastic volatility and jump component. We also allow for and experiment with different empirical specifications of the jump size distributions. We use two types of data sets. One involves the S&P500 and the other comprises of 100 years of daily Dow Jones index. The former is a return series often used in the literature and allows us to compare our results with previous studies. The latter has the advantage to provide a long time series and enhances the possibility of estimating the jump component more precisely. The non-affine random intensity jump processes are more parsimonious than the affine class and appear to fit the data much better.Item Open Access Computation in Macroeconomic Asset Pricing(2011) Aldrich, Eric MarkThis dissertation investigates computational methods for macroeconomic asset pricing models. It demonstrates that advances in economic modeling often require advances in computation and highlights a particular case where more demanding computational methods are required to solve an economic model. It also discusses advances in computational technology that allow researchers to utilize solution methods that would have been previously infeasible. In particular, it demonstrates the wide applicability and potential gains of GPU computing, a parallel computing framework, and applies those tools to a computationally challenging model which investigates trading volume in a general equilibrium, complete-markets economy where agents have heterogeneous beliefs.
Item Open Access Financial Market Volatility and Jumps(2007-05-07T19:07:04Z) Huang, XinThis dissertation consists of three related chapters that study financial market volatility, jumps and the economic factors behind them. Each of the chapters analyzes a different aspect of this problem. The first chapter examines tests for jumps based on recent asymptotic results. Monte Carlo evidence suggests that the daily ratio z-statistic has appropriate size, good power, and good jump detection capabilities revealed by the confusion matrix comprised of jump classification probabilities. Theoretical and Monte Carlo analysis indicate that microstructure noise biases the tests against detecting jumps, and that a simple lagging strategy corrects the bias. Empirical work documents evidence for jumps that account for seven percent of stock market price variance. Building on realized variance and bi-power variation measures constructed from high-frequency financial prices, the second chapter proposes a simple reduced form framework for modelling and forecasting daily return volatility. The chapter first decomposes the total daily return variance into three components, and proposes different models for the different variance components: an approximate long-memory HAR-GARCH model for the daytime continuous variance, an ACH model for the jump occurrence hazard rate, a log-linear structure for the conditional jump size, and an augmented GARCH model for the overnight variance. Then the chapter combines the different models to generate an overall forecasting framework, which improves the volatility forecasts for the daily, weekly and monthly horizons. The third chapter studies the economic factors that generate financial market volatility and jumps. It extends the recent literature by separating market responses into continuous variance and discontinuous jumps, and differentiating the market’s disagreement and uncertainty. The chapter finds that there are more large jumps on news days than on no-news days, with the fixed-income market being more responsive than the equity market, and non-farm payroll employment being the most influential news. Surprises in forecasts impact volatility and jumps in the fixed-income market more than the equity market, while disagreement and uncertainty influence both markets with different effects on volatility and jumps. JEL classification: C1, C2, C5, C51, C52, F3, F4, G1, G14Item Open Access "Nonlinear Dynamic Structures"(Econometrica, 1993-07) Gallant, A Ronald; Rossi, Peter E; Tauchen, GeorgeItem Restricted "Seminonparametric Estimation of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications"(Econometrica, 1989-09) Gallant, A Ronald; Tauchen, GeorgeItem Open Access Specification Analysis of Continuous Time Models in Finance(1995-10) Gallant, A Ronald; Tauchen, GeorgeItem Open Access Structural Estimation Using Sequential Monte Carlo Methods(2011) Chen, HaoThis dissertation aims to introduce a new sequential Monte Carlo (SMC) based estimation framework for structural models used in macroeconomics and industrial organization. Current Markov chain Monte Carlo (MCMC) estimation methods for structural models suffer from slow Markov chain convergence, which means parameter and state spaces of interest might not be properly explored unless huge numbers of samples are simulated. This could lead to insurmountable computational burdens for the estimation of those structural models that are expensive to solve. In contrast, SMC methods rely on the principle of sequential importance sampling to jointly evolve simulated particles, thus bypassing the dependence on Markov chain convergence altogether. This dissertation will explore the feasibility and the potential benefits to estimating structural models using SMC based methods.
Chapter 1 casts the structural estimation problem in the form of inference of hidden Markov models and demonstrates with a simple growth model.
Chapter 2 presents the key ingredients, both conceptual and theoretical, to successful SMC parameter estimation strategies in the context of structural economic models.
Chapter 3, based on Chen, Petralia and Lopes (2010), develops SMC estimation methods for dynamic stochastic general equilibrium (DSGE) models. SMC algorithms allow a simultaneous filtering of time-varying state vectors and estimation of fixed parameters. We first establish empirical feasibility of the full SMC approach by comparing estimation results from both MCMC batch estimation and SMC on-line estimation on a simple neoclassical growth model. We then estimate a large scale DSGE model for the Euro area developed in Smets and Wouters (2003) with a full SMC approach, and revisit the on-going debate between the merits of reduced form and structural models in the macroeconomics context by performing sequential model assessment between the DSGE model and various VAR/BVAR models.
Chapter 4 proposes an SMC estimation procedure and show that it readily applies to the estimation of dynamic discrete games with serially correlated endogenous state variables. I apply this estimation procedure to a dynamic oligopolistic game of entry using data from the generic pharmaceutical industry and demonstrate that the proposed SMC method can potentially better explore the parameter posterior space while being more computationally efficient than MCMC estimation. In addition, I show how the unobserved endogenous cost paths could be recovered using particle smoothing, both with and without parameter uncertainty. Parameter estimates obtained using this SMC based method largely concur with earlier findings that spillover effect from market entry is significant and plays an important role in the generic drug industry, but that it might not be as high as previously thought when full model uncertainty is taken into account during estimation.