Browsing by Author "Gampe, Jutta"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Constant mortality and fertility over age in Hydra.(Proc Natl Acad Sci U S A, 2015-12-22) Schaible, Ralf; Scheuerlein, Alexander; Dańko, Maciej J; Gampe, Jutta; Martínez, Daniel E; Vaupel, James WSenescence, the increase in mortality and decline in fertility with age after maturity, was thought to be inevitable for all multicellular species capable of repeated breeding. Recent theoretical advances and compilations of data suggest that mortality and fertility trajectories can go up or down, or remain constant with age, but the data are scanty and problematic. Here, we present compelling evidence for constant age-specific death and reproduction rates in Hydra, a basal metazoan, in a set of experiments comprising more than 3.9 million days of observations of individual Hydra. Our data show that 2,256 Hydra from two closely related species in two laboratories in 12 cohorts, with cohort age ranging from 0 to more than 41 y, have extremely low, constant rates of mortality. Fertility rates for Hydra did not systematically decline with advancing age. This falsifies the universality of the theories of the evolution of aging that posit that all species deteriorate with age after maturity. The nonsenescent life history of Hydra implies levels of maintenance and repair that are sufficient to prevent the accumulation of damage for at least decades after maturity, far longer than the short life expectancy of Hydra in the wild. A high proportion of stem cells, constant and rapid cell turnover, few cell types, a simple body plan, and the fact that the germ line is not segregated from the soma are characteristics of Hydra that may make nonsenescence feasible. Nonsenescence may be optimal because lifetime reproduction may be enhanced more by extending adult life spans than by increasing daily fertility.Item Open Access Genome-wide linkage analysis for human longevity: Genetics of Healthy Aging Study.(Aging Cell, 2013-04) Beekman, Marian; Blanché, Hélène; Perola, Markus; Hervonen, Anti; Bezrukov, Vladyslav; Sikora, Ewa; Flachsbart, Friederike; Christiansen, Lene; De Craen, Anton JM; Kirkwood, Tom BL; Rea, Irene Maeve; Poulain, Michel; Robine, Jean-Marie; Valensin, Silvana; Stazi, Maria Antonietta; Passarino, Giuseppe; Deiana, Luca; Gonos, Efstathios S; Paternoster, Lavinia; Sørensen, Thorkild IA; Tan, Qihua; Helmer, Quinta; van den Akker, Erik B; Deelen, Joris; Martella, Francesca; Cordell, Heather J; Ayers, Kristin L; Vaupel, James W; Törnwall, Outi; Johnson, Thomas E; Schreiber, Stefan; Lathrop, Mark; Skytthe, Axel; Westendorp, Rudi GJ; Christensen, Kaare; Gampe, Jutta; Nebel, Almut; Houwing-Duistermaat, Jeanine J; Slagboom, Pieternella Eline; Franceschi, Claudio; GEHA consortiumClear evidence exists for heritability of human longevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118 nonagenarian Caucasian sibling pairs that have been enrolled in 15 study centers of 11 European countries as part of the Genetics of Healthy Aging (GEHA) project. In the joint linkage analyses, we observed four regions that show linkage with longevity; chromosome 14q11.2 (LOD = 3.47), chromosome 17q12-q22 (LOD = 2.95), chromosome 19p13.3-p13.11 (LOD = 3.76), and chromosome 19q13.11-q13.32 (LOD = 3.57). To fine map these regions linked to longevity, we performed association analysis using GWAS data in a subgroup of 1228 unrelated nonagenarian and 1907 geographically matched controls. Using a fixed-effect meta-analysis approach, rs4420638 at the TOMM40/APOE/APOC1 gene locus showed significant association with longevity (P-value = 9.6 × 10(-8) ). By combined modeling of linkage and association, we showed that association of longevity with APOEε4 and APOEε2 alleles explain the linkage at 19q13.11-q13.32 with P-value = 0.02 and P-value = 1.0 × 10(-5) , respectively. In the largest linkage scan thus far performed for human familial longevity, we confirm that the APOE locus is a longevity gene and that additional longevity loci may be identified at 14q11.2, 17q12-q22, and 19p13.3-p13.11. As the latter linkage results are not explained by common variants, we suggest that rare variants play an important role in human familial longevity.