Browsing by Author "Gao, Erhe"
Now showing 1 - 13 of 13
- Results Per Page
- Sort Options
Item Open Access A peptide of the amino-terminus of GRK2 induces hypertrophy and yet elicits cardioprotection after pressure overload(Journal of Molecular and Cellular Cardiology, 2021-05) Bledzka, Kamila M; Manaserh, Iyad H; Grondolsky, Jessica; Pfleger, Jessica; Roy, Rajika; Gao, Erhe; Chuprun, J Kurt; Koch, Walter J; Schumacher, Sarah MItem Open Access C1q/Tumor Necrosis Factor-Related Protein-9 Regulates the Fate of Implanted Mesenchymal Stem Cells and Mobilizes Their Protective Effects Against Ischemic Heart Injury via Multiple Novel Signaling Pathways.(Circulation, 2017-11) Yan, Wenjun; Guo, Yongzhen; Tao, Ling; Lau, Wayne Bond; Gan, Lu; Yan, Zheyi; Guo, Rui; Gao, Erhe; Wong, G William; Koch, Walter L; Wang, Yajing; Ma, Xin-LiangBackground
Cell therapy remains the most promising approach against ischemic heart injury. However, the poor survival of engrafted stem cells in the ischemic environment limits their therapeutic efficacy for cardiac repair after myocardial infarction. CTRP9 (C1q/tumor necrosis factor-related protein-9) is a novel prosurvival cardiokine with significantly downregulated expression after myocardial infarction. Here we tested a hypothesis that CTRP9 might be a cardiokine required for a healthy microenvironment promoting implanted stem cell survival and cardioprotection.Methods
Mice were subjected to myocardial infarction and treated with adipose-derived mesenchymal stem cells (ADSCs, intramyocardial transplantation), CTRP9, or their combination. Survival, cardiac remodeling and function, cardiomyocytes apoptosis, and ADSCs engraftment were evaluated. Whether CTRP9 directly regulates ADSCs function was determined in vitro. Discovery-drive approaches followed by cause-effect analysis were used to uncover the molecular mechanisms of CTRP9.Results
Administration of ADSCs alone failed to exert significant cardioprotection. However, administration of ADSCs in addition to CTRP9 further enhanced the cardioprotective effect of CTRP9 (P<0.05 or P<0.01 versus CTRP9 alone), suggesting a synergistic effect. Administration of CTRP9 at a dose recovering physiological CTRP9 levels significantly prolonged ADSCs retention/survival after implantation. Conversely, the number of engrafted ADSCs was significantly reduced in the CTRP9 knockout heart. In vitro study demonstrated that CTRP9 promoted ADSCs proliferation and migration, and it protected ADSCs against hydrogen peroxide-induced cellular death. CTRP9 enhances ADSCs proliferation/migration by extracellular regulated protein kinases (ERK)1/2-matrix metallopeptidase 9 signaling and promotes antiapoptotic/cell survival via ERK-nuclear factor erythroid-derived 2-like 2/antioxidative protein expression. N-cadherin was identified as a novel CTRP9 receptor mediating ADSCs signaling. Blockade of either N-cadherin or ERK1/2 completely abolished the previously noted CTRP9 effects. Although CTRP9 failed to promote ADSCs cardiogenic differentiation, CTRP9 promotes superoxide dismutase 3 expression and secretion from ADSCs, protecting cardiomyocytes against oxidative stress-induced cell death.Conclusions
We provide the first evidence that CTRP9 promotes ADSCs proliferation/survival, stimulates ADSCs migration, and attenuates cardiomyocyte cell death by previously unrecognized signaling mechanisms. These include binding with N-cadherin, activation of ERK-matrix metallopeptidase 9 and ERK-nuclear factor erythroid-derived 2-like 2 signaling, and upregulation/secretion of antioxidative proteins. These results suggest that CTRP9 is a cardiokine critical in maintaining a healthy microenvironment facilitating stem cell engraftment in infarcted myocardial tissue, thereby enhancing stem cell therapeutic efficacy.Item Open Access Characterization of βARKct engineered cellular extracellular vesicles and model specific cardioprotection(American Journal of Physiology-Heart and Circulatory Physiology, 2021-04-01) Kwon, Jin-Sook; Schumacher, Sarah M; Gao, Erhe; Chuprun, J Kurt; Ibetti, Jessica; Roy, Rajika; Khan, Mohsin; Kishore, Raj; Koch, Walter JβARKct, the peptide inhibitor of GRK2, improves survival and metabolic functions of cardiac-derived progenitor cells. As any benefit of stem cells in the ischemic and injured heart suggests paracrine mechanisms via secreted EVs, we investigated whether CDC-βARKct engineered EVs would show any benefit over control CDC-EVs. Compared with control EVs, βARKct-containing EVs displayed some unique beneficial properties that may be due to altered pro- and anti-inflammatory cytokines within the vesicles.Item Open Access Determining the absolute requirement of G protein-coupled receptor kinase 5 for pathological cardiac hypertrophy: short communication.(Circulation research, 2012-09) Gold, Jessica I; Gao, Erhe; Shang, Xiying; Premont, Richard T; Koch, Walter JRationale
Heart failure (HF) is often the end phase of maladaptive cardiac hypertrophy. A contributing factor is activation of a hypertrophic gene expression program controlled by decreased class II histone deacetylase (HDAC) transcriptional repression via HDAC phosphorylation. Cardiac-specific overexpression of G proteinen-coupled receptor kinase-5 (GRK5) has previously been shown to possess nuclear activity as a HDAC5 kinase, promoting an intolerance to in vivo ventricular pressure overload; however, its endogenous requirement in adaptive and maladaptive hypertrophy remains unknown.Objective
We used mouse models with global or cardiomyocyte-specific GRK5 gene deletion to determine the absolute requirement of endogenous GRK5 for cardiac hypertrophy and HF development after chronic hypertrophic stimuli.Methods and results
Mice with global deletion of GRK5 were subjected to transverse aortic constriction. At 12 weeks, these mice showed attenuated hypertrophy, remodeling, and hypertrophic gene transcription along with preserved cardiac function. Global GRK5 deletion also diminished hypertrophy and related gene expression due to chronic phenylephrine infusion. We then generated mice with conditional, cardiac-specific deletion of GRK5 that also demonstrated similar protection from pathological cardiac hypertrophy and HF after transverse aortic constriction.Conclusions
These results define myocyte GRK5 as a critical regulator of pathological cardiac growth after ventricular pressure overload, supporting its role as an endogenous (patho)-physiological HDAC kinase. Further, these results define GRK5 as a potential therapeutic target to limit HF development after hypertrophic stress.Item Open Access G protein-coupled receptor kinase 5 (GRK5) contributes to impaired cardiac function and immune cell recruitment in post-ischemic heart failure(Cardiovascular Research, 2022-01-07) de Lucia, Claudio; Grisanti, Laurel A; Borghetti, Giulia; Piedepalumbo, Michela; Ibetti, Jessica; Lucchese, Anna Maria; Barr, Eric W; Roy, Rajika; Okyere, Ama Dedo; Murphy, Haley Christine; Gao, Erhe; Rengo, Giuseppe; Houser, Steven R; Tilley, Douglas G; Koch, Walter JAbstract Aims Myocardial infarction (MI) is the most common cause of heart failure (HF) worldwide. G protein-coupled receptor kinase 5 (GRK5) is upregulated in failing human myocardium and promotes maladaptive cardiac hypertrophy in animal models. However, the role of GRK5 in ischemic heart disease is still unknown. In this study, we evaluated whether myocardial GRK5 plays a critical role post-MI in mice and included the examination of specific cardiac immune and inflammatory responses. Methods and results Cardiomyocyte-specific GRK5 overexpressing transgenic mice (TgGRK5) and non-transgenic littermate control (NLC) mice as well as cardiomyocyte-specific GRK5 knockout mice (GRK5cKO) and wild type (WT) were subjected to MI and, functional as well as structural changes together with outcomes were studied. TgGRK5 post-MI mice showed decreased cardiac function, augmented left ventricular dimension and decreased survival rate compared to NLC post-MI mice. Cardiac hypertrophy and fibrosis as well as fetal gene expression were increased post-MI in TgGRK5 compared to NLC mice. In TgGRK5 mice, GRK5 elevation produced immuno-regulators that contributed to the elevated and long-lasting leukocyte recruitment into the injured heart and ultimately to chronic cardiac inflammation. We found an increased presence of pro-inflammatory neutrophils and macrophages as well as neutrophils, macrophages and T-lymphocytes at 4-days and 8-weeks respectively post-MI in TgGRK5 hearts. Conversely, GRK5cKO mice were protected from ischemic injury and showed reduced early immune cell recruitment (predominantly monocytes) to the heart, improved contractility and reduced mortality compared to WT post-MI mice. Interestingly, cardiomyocyte-specific GRK2 transgenic mice did not share the same phenotype of TgGRK5 mice and did not have increased cardiac leukocyte migration and cytokine or chemokine production post-MI. Conclusions Our study shows that myocyte GRK5 has a crucial and GRK-selective role on the regulation of leucocyte infiltration into the heart, cardiac function and survival in a murine model of post-ischemic HF, supporting GRK5 inhibition as a therapeutic target for HF.Item Open Access Genomic Binding Patterns of Forkhead Box Protein O1 Reveal Its Unique Role in Cardiac Hypertrophy(Circulation, 2020-09) Pfleger, Jessica; Coleman, Ryan C; Ibetti, Jessica; Roy, Rajika; Kyriazis, Ioannis D; Gao, Erhe; Drosatos, Konstantinos; Koch, Walter JBackground: Cardiac hypertrophic growth is mediated by robust changes in gene expression and changes that underlie the increase in cardiomyocyte size. The former is regulated by RNA polymerase II (pol II) de novo recruitment or loss; the latter involves incremental increases in the transcriptional elongation activity of pol II that is preassembled at the transcription start site. The differential regulation of these distinct processes by transcription factors remains unknown. Forkhead box protein O1 (FoxO1) is an insulin-sensitive transcription factor that is also regulated by hypertrophic stimuli in the heart. However, the scope of its gene regulation remains unexplored. Methods: To address this, we performed FoxO1 chromatin immunoprecipitation–deep sequencing in mouse hearts after 7 days of isoproterenol injections (3 mg·kg −1 ·mg −1 ), transverse aortic constriction, or vehicle injection/sham surgery. Results: Our data demonstrate increases in FoxO1 chromatin binding during cardiac hypertrophic growth, which positively correlate with extent of hypertrophy. To assess the role of FoxO1 on pol II dynamics and gene expression, the FoxO1 chromatin immunoprecipitation–deep sequencing results were aligned with those of pol II chromatin immunoprecipitation–deep sequencing across the chromosomal coordinates of sham- or transverse aortic constriction–operated mouse hearts. This uncovered that FoxO1 binds to the promoters of 60% of cardiac-expressed genes at baseline and 91% after transverse aortic constriction. FoxO1 binding is increased in genes regulated by pol II de novo recruitment, loss, or pause-release. In vitro, endothelin-1– and, in vivo, pressure overload–induced cardiomyocyte hypertrophic growth is prevented with FoxO1 knockdown or deletion, which was accompanied by reductions in inducible genes, including Comtd1 in vitro and Fstl1 and Uck2 in vivo. Conclusions: Together, our data suggest that FoxO1 may mediate cardiac hypertrophic growth via regulation of pol II de novo recruitment and pause-release; the latter represents the majority (59%) of FoxO1-bound, pol II–regulated genes after pressure overload. These findings demonstrate the breadth of transcriptional regulation by FoxO1 during cardiac hypertrophy, information that is essential for its therapeutic targeting.Item Open Access Gi-biased β2AR signaling links GRK2 upregulation to heart failure.(Circulation research, 2012-01) Zhu, Weizhong; Petrashevskaya, Natalia; Ren, Shuxun; Zhao, Aizhi; Chakir, Khalid; Gao, Erhe; Chuprun, J Kurt; Wang, Yibin; Talan, Mark; Dorn, Gerald W; Lakatta, Edward G; Koch, Walter J; Feldman, Arthur M; Xiao, Rui-PingRationale
Phosphorylation of β(2)-adrenergic receptor (β(2)AR) by a family of serine/threonine kinases known as G protein-coupled receptor kinase (GRK) and protein kinase A (PKA) is a critical determinant of cardiac function. Upregulation of G protein-coupled receptor kinase 2 (GRK2) is a well-established causal factor of heart failure, but the underlying mechanism is poorly understood.Objective
We sought to determine the relative contribution of PKA- and GRK-mediated phosphorylation of β(2)AR to the receptor coupling to G(i) signaling that attenuates cardiac reserve and contributes to the pathogenesis of heart failure in response to pressure overload.Methods and results
Overexpression of GRK2 led to a G(i)-dependent decrease of contractile response to βAR stimulation in cultured mouse cardiomyocytes and in vivo. Importantly, cardiac-specific transgenic overexpression of a mutant β(2)AR lacking PKA phosphorylation sites (PKA-TG) but not the wild-type β(2)AR (WT-TG) or a mutant β(2)AR lacking GRK sites (GRK-TG) led to exaggerated cardiac response to pressure overload, as manifested by markedly exacerbated cardiac maladaptive remodeling and failure and early mortality. Furthermore, inhibition of G(i) signaling with pertussis toxin restores cardiac function in heart failure associated with increased β(2)AR to G(i) coupling induced by removing PKA phosphorylation of the receptor and in GRK2 transgenic mice, indicating that enhanced phosphorylation of β(2)AR by GRK and resultant increase in G(i)-biased β(2)AR signaling play an important role in the development of heart failure.Conclusions
Our data show that enhanced β(2)AR phosphorylation by GRK, in addition to PKA, leads the receptor to G(i)-biased signaling, which, in turn, contributes to the pathogenesis of heart failure, marking G(i)-biased β(2)AR signaling as a primary event linking upregulation of GRK to cardiac maladaptive remodeling, failure and cardiodepression.Item Open Access GRK2 blockade with βARKct is essential for cardiac β2-adrenergic receptor signaling towards increased contractility.(Cell communication and signaling : CCS, 2013-08) Salazar, Norma C; Vallejos, Ximena; Siryk, Ashley; Rengo, Giuseppe; Cannavo, Alessandro; Liccardo, Daniela; De Lucia, Claudio; Gao, Erhe; Leosco, Dario; Koch, Walter J; Lymperopoulos, AnastasiosBackground
β1- and β2-adrenergic receptors (ARs) play distinct roles in the heart, e.g. β1AR is pro-contractile and pro-apoptotic but β2AR anti-apoptotic and only weakly pro-contractile. G protein coupled receptor kinase (GRK)-2 desensitizes and opposes βAR pro-contractile signaling by phosphorylating the receptor and inducing beta-arrestin (βarr) binding. We posited herein that GRK2 blockade might enhance the pro-contractile signaling of the β2AR subtype in the heart. We tested the effects of cardiac-targeted GRK2 inhibition in vivo exclusively on β2AR signaling under normal conditions and in heart failure (HF).Results
We crossed β1AR knockout (B1KO) mice with cardiac-specific transgenic mice expressing the βARKct, a known GRK2 inhibitor, and studied the offspring under normal conditions and in post-myocardial infarction (MI). βARKct expression in vivo proved essential for β2AR-dependent contractile function, as β2AR stimulation with isoproterenol fails to increase contractility in either healthy or post-MI B1KO mice and it only does so in the presence of βARKct. The main underlying mechanism for this is blockade of the interaction of phosphodiesterase (PDE) type 4D with the cardiac β2AR, which is normally mediated by the actions of GRK2 and βarrs on the receptor. The molecular "brake" that PDE4D poses on β2AR signaling to contractility stimulation is thus "released". Regarding the other beneficial functions of cardiac β2AR, βARKct increased overall survival of the post-MI B1KO mice progressing to HF, via a decrease in cardiac apoptosis and an increase in wound healing-associated inflammation early (at 24 hrs) post-MI. However, these effects disappear by 4 weeks post-MI, and, in their place, upregulation of the other major GRK in the heart, GRK5, is observed.Conclusions
GRK2 inhibition in vivo with βARKct is absolutely essential for cardiac β2AR pro-contractile signaling and function. In addition, β2AR anti-apoptotic signaling in post-MI HF is augmented by βARKct, although this effect is short-lived.Item Open Access Loss of dynamic regulation of G protein-coupled receptor kinase 2 by nitric oxide leads to cardiovascular dysfunction with aging.(American journal of physiology. Heart and circulatory physiology, 2020-05) Lieu, Melissa; Traynham, Christopher J; de Lucia, Claudio; Pfleger, Jessica; Piedepalumbo, Michela; Roy, Rajika; Petovic, Jennifer; Landesberg, Gavin; Forrester, Steven J; Hoffman, Matthew; Grisanti, Laurel A; Yuan, Ancai; Gao, Erhe; Drosatos, Konstantinos; Eguchi, Satoru; Scalia, Rosario; Tilley, Douglas G; Koch, Walter JNitric oxide (NO) and S-nitrosothiol (SNO) are considered cardio- and vasoprotective substances. We now understand that one mechanism in which NO/SNOs provide cardiovascular protection is through their direct inhibition of cardiac G protein-coupled receptor (GPCR) kinase 2 (GRK2) activity via S-nitrosylation of GRK2 at cysteine 340 (C340). This maintains GPCR homeostasis, including β-adrenergic receptors, through curbing receptor GRK2-mediated desensitization. Previously, we have developed a knockin mouse (GRK2-C340S) where endogenous GRK2 is resistant to dynamic S-nitrosylation, which led to increased GRK2 desensitizing activity. This unchecked regulation of cardiac GRK2 activity resulted in significantly more myocardial damage after ischemic injury that was resistant to NO-mediated cardioprotection. Although young adult GRK2-C340S mice show no overt phenotype, we now report that as these mice age, they develop significant cardiovascular dysfunction due to the loss of SNO-mediated GRK2 regulation. This pathological phenotype is apparent as early as 12 mo of age and includes reduced cardiac function, increased cardiac perivascular fibrosis, and maladaptive cardiac hypertrophy, which are common maladies found in patients with cardiovascular disease (CVD). There are also vascular reactivity and aortic abnormalities present in these mice. Therefore, our data demonstrate that a chronic and global increase in GRK2 activity is sufficient to cause cardiovascular remodeling and dysfunction, likely due to GRK2's desensitizing effects in several tissues. Because GRK2 levels have been reported to be elevated in elderly CVD patients, GRK2-C340 mice can give insight into the aged-molecular landscape leading to CVD.NEW & NOTEWORTHY Research on G protein-coupled receptor kinase 2 (GRK2) in the setting of cardiovascular aging is largely unknown despite its strong established functions in cardiovascular physiology and pathophysiology. This study uses a mouse model of chronic GRK2 overactivity to further investigate the consequences of long-term GRK2 on cardiac function and structure. We report for the first time that chronic GRK2 overactivity was able to cause cardiac dysfunction and remodeling independent of surgical intervention, highlighting the importance of GRK activity in aged-related heart disease.Item Open Access MAP Kinase Phosphatase-5 Deficiency Protects Against Pressure Overload-Induced Cardiac Fibrosis(Frontiers in Immunology) Zhong, Chao; Min, Kisuk; Zhao, Zhiqiang; Zhang, Cheng; Gao, Erhe; Huang, Yan; Zhang, Xinbo; Baldini, Margaret; Roy, Rajika; Yang, Xiaofeng; Koch, Walter J; Bennett, Anton M; Yu, JunCardiac fibrosis, a pathological condition due to excessive extracellular matrix (ECM) deposition in the myocardium, is associated with nearly all forms of heart disease. The processes and mechanisms that regulate cardiac fibrosis are not fully understood. In response to cardiac injury, macrophages undergo marked phenotypic and functional changes and act as crucial regulators of myocardial fibrotic remodeling. Here we show that the mitogen-activated protein kinase (MAPK) phosphatase-5 (MKP-5) in macrophages is involved in pressure overload-induced cardiac fibrosis. Cardiac pressure overload resulting from transverse aortic constriction (TAC) leads to the upregulation of Mkp-5 gene expression in the heart. In mice lacking MKP-5, p38 MAPK and JNK were hyperactivated in the heart, and TAC-induced cardiac hypertrophy and myocardial fibrosis were attenuated. MKP-5 deficiency upregulated the expression of the ECM-degrading matrix metalloproteinase-9 (Mmp-9) in the Ly6Clow (M2-type) cardiac macrophage subset. Consistent with in vivo findings, MKP-5 deficiency promoted MMP-9 expression and activity of pro-fibrotic macrophages in response to IL-4 stimulation. Furthermore, using pharmacological inhibitors against p38 MAPK, JNK, and ERK, we demonstrated that MKP-5 suppresses MMP-9 expression through a combined effect of p38 MAPK/JNK/ERK, which subsequently contributes to the inhibition of ECM-degrading activity. Taken together, our study indicates that pressure overload induces MKP-5 expression and facilitates cardiac hypertrophy and fibrosis. MKP-5 deficiency attenuates cardiac fibrosis through MAPK-mediated regulation of MMP-9 expression in Ly6Clow cardiac macrophages.Item Open Access Negative impact of β-arrestin-1 on post-myocardial infarction heart failure via cardiac and adrenal-dependent neurohormonal mechanisms.(Hypertension (Dallas, Tex. : 1979), 2014-02) Bathgate-Siryk, Ashley; Dabul, Samalia; Pandya, Krunal; Walklett, Karlee; Rengo, Giuseppe; Cannavo, Alessandro; De Lucia, Claudio; Liccardo, Daniela; Gao, Erhe; Leosco, Dario; Koch, Walter J; Lymperopoulos, Anastasiosβ-Arrestin (βarr)-1 and β-arrestin-2 (βarrs) are universal G-protein-coupled receptor adapter proteins that negatively regulate cardiac β-adrenergic receptor (βAR) function via βAR desensitization and downregulation. In addition, they mediate G-protein-independent βAR signaling, which might be beneficial, for example, antiapoptotic, for the heart. However, the specific role(s) of each βarr isoform in cardiac βAR dysfunction, the molecular hallmark of chronic heart failure (HF), remains unknown. Furthermore, adrenal βarr1 exacerbates HF by chronically enhancing adrenal production and hence circulating levels of aldosterone and catecholamines. Herein, we sought to delineate specific roles of βarr1 in post-myocardial infarction (MI) HF by testing the effects of βarr1 genetic deletion on normal and post-MI cardiac function and morphology. We studied βarr1 knockout (βarr1KO) mice alongside wild-type controls under normal conditions and after surgical MI. Normal (sham-operated) βarr1KO mice display enhanced βAR-dependent contractility and post-MI βarr1KO mice enhanced overall cardiac function (and βAR-dependent contractility) compared with wild type. Post-MI βarr1KO mice also show increased survival and decreased cardiac infarct size, apoptosis, and adverse remodeling, as well as circulating catecholamines and aldosterone, compared with post-MI wild type. The underlying mechanisms, on one hand, improved cardiac βAR signaling and function, as evidenced by increased βAR density and procontractile signaling, via reduced cardiac βAR desensitization because of cardiac βarr1 absence, and, on the other hand, decreased production leading to lower circulating levels of catecholamines and aldosterone because of adrenal βarr1 absence. Thus, βarr1, via both cardiac and adrenal effects, is detrimental for cardiac structure and function and significantly exacerbates post-MI HF.Item Open Access Restoring diabetes-induced autophagic flux arrest in ischemic/reperfused heart by ADIPOR (adiponectin receptor) activation involves both AMPK-dependent and AMPK-independent signaling.(Autophagy, 2017-01) Wang, Yajing; Liang, Bin; Lau, Wayne Bond; Du, Yunhui; Guo, Rui; Yan, Zheyi; Gan, Lu; Yan, Wenjun; Zhao, Jianli; Gao, Erhe; Koch, Walter; Ma, Xin-LiangMacroautophagy/autophagy is increasingly recognized as an important regulator of myocardial ischemia-reperfusion (MI-R) injury. However, whether and how diabetes may alter autophagy in response to MI-R remains unknown. Deficiency of ADIPOQ, a cardioprotective molecule, markedly increases MI-R injury. However, the role of diabetic hypoadiponectinemia in cardiac autophagy alteration after MI-R is unclear. Utilizing normal control (NC), high-fat-diet-induced diabetes, and Adipoq knockout (adipoq-/-) mice, we demonstrated that autophagosome formation was modestly inhibited and autophagosome clearance was markedly impaired in the diabetic heart subjected to MI-R. adipoq-/- largely reproduced the phenotypic alterations observed in the ischemic-reperfused diabetic heart. Treatment of diabetic and adipoq-/- mice with AdipoRon, a novel ADIPOR (adiponectin receptor) agonist, stimulated autophagosome formation, markedly increased autophagosome clearance, reduced infarct size, and improved cardiac function (P < 0.01 vs vehicle). Mechanistically, AdipoRon caused significant phosphorylation of AMPK-BECN1 (Ser93/Thr119)-class III PtdIns3K (Ser164) and enhanced lysosome protein LAMP2 expression both in vivo and in isolated adult cardiomyocytes. Pharmacological AMPK inhibition or genetic Prkaa2 mutation abolished AdipoRon-induced BECN1 (Ser93/Thr119)-PtdIns3K (Ser164) phosphorylation and AdipoRon-stimulated autophagosome formation. However, AdipoRon-induced LAMP2 expression, AdipoRon-stimulated autophagosome clearance, and AdipoRon-suppressed superoxide generation were not affected by AMPK inhibition. Treatment with MnTMPyP (a superoxide scavenger) increased LAMP2 expression and stimulated autophagosome clearance in simulated ischemic-reperfused cardiomyocytes. However, no additive effect between AdipoRon and MnTMPyP was observed. Collectively, these results demonstrate that hypoadiponectinemia impairs autophagic flux, contributing to enhanced MI-R injury in the diabetic state. ADIPOR activation restores AMPK-mediated autophagosome formation and antioxidant-mediated autophagosome clearance, representing a novel intervention effective against MI-R injury in diabetic conditions.Item Open Access Restricting mitochondrial GRK2 post-ischemia confers cardioprotection by reducing myocyte death and maintaining glucose oxidation(Science Signaling, 2018-12-11) Sato, Priscila Y; Chuprun, J Kurt; Grisanti, Laurel A; Woodall, Meryl C; Brown, Brett R; Roy, Rajika; Traynham, Christopher J; Ibetti, Jessica; Lucchese, Anna M; Yuan, Ancai; Drosatos, Konstantinos; Tilley, Doug G; Gao, Erhe; Koch, Walter JPreventing GRK2 from localizing to mitochondria lessens the damage induced by myocardial infarction.