Browsing by Author "Gao, Junheng"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Clinical and radiographic predictors of successful therapeutic bronchoscopy for the relief of malignant central airway obstruction.(BMC pulmonary medicine, 2019-11) Giovacchini, Coral X; Kessler, Edward R; Merrick, Christopher M; Gao, Junheng; Wang, Xiaofei; Wahidi, Momen M; Shofer, Scott L; Cheng, George Z; Mahmood, KamranBACKGROUND:Malignant central airway obstruction (CAO) occurs in approximately 20-30% of patients with lung cancer and is associated with debilitating symptoms and poor prognosis. Multimodality therapeutic bronchoscopy can relieve malignant CAO, though carries risk. Evidence to guide clinicians regarding which patients may benefit from such interventions is sparse. We aimed to assess the clinical and radiographic predictors associated with therapeutic bronchoscopy success in relieving malignant CAO. METHODS:We reviewed all cases of therapeutic bronchoscopy performed for malignant CAO at our institution from January 2010-February 2017. Therapeutic bronchoscopy success was defined as establishing airway patency of > 50%. Patient demographics and baseline characteristics, oncology history, degree of airway obstruction, procedural interventions, and complications were compared between successful and unsuccessful groups. Univariate and multivariate logistic regression identified the significant clinical and radiographic predictors for therapeutic success. The corresponding simple and conditional odds ratio were calculated. A time-to-event analysis with Kaplan-Meier plots was performed to estimate overall survival. RESULTS:During the study period, 301 therapeutic bronchoscopies were performed; 44 (14.6%) were considered unsuccessful. Factors associated with success included never vs current smoking status (OR 5.36, 95% CI:1.45-19.74, p = 0.010), patent distal airway on CT imaging (OR 15.11, 95% CI:2.98-45.83, p < 0.0001) and patent distal airway visualized during bronchoscopy (OR 10.77, 95% CI:3.63-31.95, p < 0.001) in univariate analysis. Along with patent distal airway on CT imaging, increased time from radiographic finding to therapeutic bronchoscopy was associated with lower odds of success in multivariate analysis (OR 0.96, 95% CI:0.92-1.00, p = 0.048). Median survival was longer in the successful group (10.2 months, 95% CI:4.8-20.2) compared to the unsuccessful group (6.1 months, 95% CI:2.1-10.8, log rank p = 0.015). CONCLUSIONS:Predictors associated with successful therapeutic bronchoscopy for malignant CAO include distal patent airway visualized on CT scan and during bronchoscopy. Odds of success are higher in non-smokers, and with decreased time from radiographic finding of CAO to intervention.Item Open Access Neoadjuvant Radiation Therapy and Surgery Improves Metastasis-Free Survival over Surgery Alone in a Primary Mouse Model of Soft Tissue Sarcoma.(Molecular cancer therapeutics, 2023-01) Patel, Rutulkumar; Mowery, Yvonne M; Qi, Yi; Bassil, Alex M; Holbrook, Matt; Xu, Eric S; Hong, Cierra S; Himes, Jonathon E; Williams, Nerissa T; Everitt, Jeffrey; Ma, Yan; Luo, Lixia; Selitsky, Sara R; Modliszewski, Jennifer L; Gao, Junheng; Jung, Sin-Ho; Kirsch, David G; Badea, Cristian TThis study aims to investigate whether adding neoadjuvant radiotherapy (RT), anti-programmed cell death protein-1 (PD-1) antibody (anti-PD-1), or RT + anti-PD-1 to surgical resection improves disease-free survival for mice with soft tissue sarcomas (STS). We generated a high mutational load primary mouse model of STS by intramuscular injection of adenovirus expressing Cas9 and guide RNA targeting Trp53 and intramuscular injection of 3-methylcholanthrene (MCA) into the gastrocnemius muscle of wild-type mice (p53/MCA model). We randomized tumor-bearing mice to receive isotype control or anti-PD-1 antibody with or without radiotherapy (20 Gy), followed by hind limb amputation. We used micro-CT to detect lung metastases with high spatial resolution, which was confirmed by histology. We investigated whether sarcoma metastasis was regulated by immunosurveillance by lymphocytes or tumor cell-intrinsic mechanisms. Compared with surgery with isotype control antibody, the combination of anti-PD-1, radiotherapy, and surgery improved local recurrence-free survival (P = 0.035) and disease-free survival (P = 0.005), but not metastasis-free survival. Mice treated with radiotherapy, but not anti-PD-1, showed significantly improved local recurrence-free survival and metastasis-free survival over surgery alone (P = 0.043 and P = 0.007, respectively). The overall metastasis rate was low (∼12%) in the p53/MCA sarcoma model, which limited the power to detect further improvement in metastasis-free survival with addition of anti-PD-1 therapy. Tail vein injections of sarcoma cells into immunocompetent mice suggested that impaired metastasis was due to inability of sarcoma cells to grow in the lungs rather than a consequence of immunosurveillance. In conclusion, neoadjuvant radiotherapy improves metastasis-free survival after surgery in a primary model of STS.Item Open Access Neoadjuvant Radiation Therapy and Surgery Improves Metastasis-Free Survival over Surgery Alone in a Primary Mouse Model of Soft Tissue Sarcoma.(Molecular cancer therapeutics, 2023-01) Patel, Rutulkumar; Mowery, Yvonne M; Qi, Yi; Bassil, Alex M; Holbrook, Matt; Xu, Eric S; Hong, Cierra S; Himes, Jonathon E; Williams, Nerissa T; Everitt, Jeffrey; Ma, Yan; Luo, Lixia; Selitsky, Sara R; Modliszewski, Jennifer L; Gao, Junheng; Jung, Sin-Ho; Kirsch, David G; Badea, Cristian TThis study aims to investigate whether adding neoadjuvant radiotherapy (RT), anti-programmed cell death protein-1 (PD-1) antibody (anti-PD-1), or RT + anti-PD-1 to surgical resection improves disease-free survival for mice with soft tissue sarcomas (STS). We generated a high mutational load primary mouse model of STS by intramuscular injection of adenovirus expressing Cas9 and guide RNA targeting Trp53 and intramuscular injection of 3-methylcholanthrene (MCA) into the gastrocnemius muscle of wild-type mice (p53/MCA model). We randomized tumor-bearing mice to receive isotype control or anti-PD-1 antibody with or without radiotherapy (20 Gy), followed by hind limb amputation. We used micro-CT to detect lung metastases with high spatial resolution, which was confirmed by histology. We investigated whether sarcoma metastasis was regulated by immunosurveillance by lymphocytes or tumor cell-intrinsic mechanisms. Compared with surgery with isotype control antibody, the combination of anti-PD-1, radiotherapy, and surgery improved local recurrence-free survival (P = 0.035) and disease-free survival (P = 0.005), but not metastasis-free survival. Mice treated with radiotherapy, but not anti-PD-1, showed significantly improved local recurrence-free survival and metastasis-free survival over surgery alone (P = 0.043 and P = 0.007, respectively). The overall metastasis rate was low (∼12%) in the p53/MCA sarcoma model, which limited the power to detect further improvement in metastasis-free survival with addition of anti-PD-1 therapy. Tail vein injections of sarcoma cells into immunocompetent mice suggested that impaired metastasis was due to inability of sarcoma cells to grow in the lungs rather than a consequence of immunosurveillance. In conclusion, neoadjuvant radiotherapy improves metastasis-free survival after surgery in a primary model of STS.