Browsing by Author "Garman, Katherine"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Age-specific differences in oncogenic pathway deregulation seen in human breast tumors.(PLoS One, 2008-01-02) Anders, Carey K; Acharya, Chaitanya R; Hsu, David S; Broadwater, Gloria; Garman, Katherine; Foekens, John A; Zhang, Yi; Wang, Yixin; Marcom, Kelly; Marks, Jeffrey R; Mukherjee, Sayan; Nevins, Joseph R; Blackwell, Kimberly L; Potti, AnilPURPOSE: To define the biology driving the aggressive nature of breast cancer arising in young women. EXPERIMENTAL DESIGN: Among 784 patients with early stage breast cancer, using prospectively-defined, age-specific cohorts (young or=65 years), 411 eligible patients (n = 200or=65 years) with clinically-annotated Affymetrix microarray data were identified. GSEA, signatures of oncogenic pathway deregulation and predictors of chemotherapy sensitivity were evaluated within the two age-defined cohorts. RESULTS: In comparing deregulation of oncogenic pathways between age groups, a higher probability of PI3K (p = 0.006) and Myc (p = 0.03) pathway deregulation was observed in breast tumors arising in younger women. When evaluating unique patterns of pathway deregulation, a low probability of Src and E2F deregulation in tumors of younger women, concurrent with a higher probability of PI3K, Myc, and beta-catenin, conferred a worse prognosis (HR = 4.15). In contrast, a higher probability of Src and E2F pathway activation in tumors of older women, with concurrent low probability of PI3K, Myc and beta-catenin deregulation, was associated with poorer outcome (HR = 2.7). In multivariate analyses, genomic clusters of pathway deregulation illustrate prognostic value. CONCLUSION: Results demonstrate that breast cancer arising in young women represents a distinct biologic entity characterized by unique patterns of deregulated signaling pathways that are prognostic, independent of currently available clinico-pathologic variables. These results should enable refinement of targeted treatment strategies in this clinically challenging situation.Item Open Access TWEAK/Fn14 signaling is required for liver regeneration after partial hepatectomy in mice.(PLoS One, 2014) Karaca, Gamze; Swiderska-Syn, Marzena; Xie, Guanhua; Syn, Wing-Kin; Krüger, Leandi; Machado, Mariana Verdelho; Garman, Katherine; Choi, Steve S; Michelotti, Gregory A; Burkly, Linda C; Ochoa, Begoña; Diehl, Anna MaeBACKGROUND & AIMS: Pro-inflammatory cytokines are important for liver regeneration after partial hepatectomy (PH). Expression of Fibroblast growth factor-inducible 14 (Fn14), the receptor for TNF-like weak inducer of apoptosis (TWEAK), is induced rapidly after PH and remains elevated throughout the period of peak hepatocyte replication. The role of Fn14 in post-PH liver regeneration is uncertain because Fn14 is expressed by liver progenitors and TWEAK-Fn14 interactions stimulate progenitor growth, but replication of mature hepatocytes is thought to drive liver regeneration after PH. METHODS: To clarify the role of TWEAK-Fn14 after PH, we compared post-PH regenerative responses in wild type (WT) mice, Fn14 knockout (KO) mice, TWEAK KO mice, and WT mice treated with anti-TWEAK antibodies. RESULTS: In WT mice, rare Fn14(+) cells localized with other progenitor markers in peri-portal areas before PH. PH rapidly increased proliferation of Fn14(+) cells; hepatocytic cells that expressed Fn14 and other progenitor markers, such as Lgr5, progressively accumulated from 12-8 h post-PH and then declined to baseline by 96 h. When TWEAK/Fn14 signaling was disrupted, progenitor accumulation, induction of pro-regenerative cytokines, hepatocyte and cholangiocyte proliferation, and over-all survival were inhibited, while post-PH liver damage and bilirubin levels were increased. TWEAK stimulated proliferation and increased Lgr5 expression in cultured liver progenitors, but had no effect on either parameter in cultured primary hepatocytes. CONCLUSIONS: TWEAK-FN14 signaling is necessary for the healthy adult liver to regenerate normally after acute partial hepatectomy.