Browsing by Author "Ge, Dongliang"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Open Access Common genetic variation and the control of HIV-1 in humans.(PLoS Genet, 2009-12) Fellay, Jacques; Ge, Dongliang; Shianna, Kevin V; Colombo, Sara; Ledergerber, Bruno; Cirulli, Elizabeth T; Urban, Thomas J; Zhang, Kunlin; Gumbs, Curtis E; Smith, Jason P; Castagna, Antonella; Cozzi-Lepri, Alessandro; De Luca, Andrea; Easterbrook, Philippa; Günthard, Huldrych F; Mallal, Simon; Mussini, Cristina; Dalmau, Judith; Martinez-Picado, Javier; Miro, José M; Obel, Niels; Wolinsky, Steven M; Martinson, Jeremy J; Detels, Roger; Margolick, Joseph B; Jacobson, Lisa P; Descombes, Patrick; Antonarakis, Stylianos E; Beckmann, Jacques S; O'Brien, Stephen J; Letvin, Norman L; McMichael, Andrew J; Haynes, Barton F; Carrington, Mary; Feng, Sheng; Telenti, Amalio; Goldstein, David B; NIAID Center for HIV/AIDS Vaccine Immunology (CHAVI)To extend the understanding of host genetic determinants of HIV-1 control, we performed a genome-wide association study in a cohort of 2,554 infected Caucasian subjects. The study was powered to detect common genetic variants explaining down to 1.3% of the variability in viral load at set point. We provide overwhelming confirmation of three associations previously reported in a genome-wide study and show further independent effects of both common and rare variants in the Major Histocompatibility Complex region (MHC). We also examined the polymorphisms reported in previous candidate gene studies and fail to support a role for any variant outside of the MHC or the chemokine receptor cluster on chromosome 3. In addition, we evaluated functional variants, copy-number polymorphisms, epistatic interactions, and biological pathways. This study thus represents a comprehensive assessment of common human genetic variation in HIV-1 control in Caucasians.Item Open Access Genome-wide mRNA expression correlates of viral control in CD4+ T-cells from HIV-1-infected individuals.(PLoS Pathog, 2010-02-26) Rotger, Margalida; Dang, Kristen K; Fellay, Jacques; Heinzen, Erin L; Feng, Sheng; Descombes, Patrick; Shianna, Kevin V; Ge, Dongliang; Günthard, Huldrych F; Goldstein, David B; Telenti, Amalio; Swiss HIV Cohort Study; Center for HIV/AIDS Vaccine ImmunologyThere is great interindividual variability in HIV-1 viral setpoint after seroconversion, some of which is known to be due to genetic differences among infected individuals. Here, our focus is on determining, genome-wide, the contribution of variable gene expression to viral control, and to relate it to genomic DNA polymorphism. RNA was extracted from purified CD4+ T-cells from 137 HIV-1 seroconverters, 16 elite controllers, and 3 healthy blood donors. Expression levels of more than 48,000 mRNA transcripts were assessed by the Human-6 v3 Expression BeadChips (Illumina). Genome-wide SNP data was generated from genomic DNA using the HumanHap550 Genotyping BeadChip (Illumina). We observed two distinct profiles with 260 genes differentially expressed depending on HIV-1 viral load. There was significant upregulation of expression of interferon stimulated genes with increasing viral load, including genes of the intrinsic antiretroviral defense. Upon successful antiretroviral treatment, the transcriptome profile of previously viremic individuals reverted to a pattern comparable to that of elite controllers and of uninfected individuals. Genome-wide evaluation of cis-acting SNPs identified genetic variants modulating expression of 190 genes. Those were compared to the genes whose expression was found associated with viral load: expression of one interferon stimulated gene, OAS1, was found to be regulated by a SNP (rs3177979, p = 4.9E-12); however, we could not detect an independent association of the SNP with viral setpoint. Thus, this study represents an attempt to integrate genome-wide SNP signals with genome-wide expression profiles in the search for biological correlates of HIV-1 control. It underscores the paradox of the association between increasing levels of viral load and greater expression of antiviral defense pathways. It also shows that elite controllers do not have a fully distinctive mRNA expression pattern in CD4+ T cells. Overall, changes in global RNA expression reflect responses to viral replication rather than a mechanism that might explain viral control.Item Open Access Host determinants of HIV-1 control in African Americans.(J Infect Dis, 2010-04-15) Pelak, Kimberly; Goldstein, David B; Walley, Nicole M; Fellay, Jacques; Ge, Dongliang; Shianna, Kevin V; Gumbs, Curtis; Gao, Xiaojiang; Maia, Jessica M; Cronin, Kenneth D; Hussain, Shehnaz K; Carrington, Mary; Michael, Nelson L; Weintrob, Amy C; Infectious Disease Clinical Research Program HIV Working Group; National Institute of Allergy and Infectious Diseases Center for HIV/AIDS Vaccine Immunology (CHAVI)We performed a whole-genome association study of human immunodeficiency virus type 1 (HIV-1) set point among a cohort of African Americans (n = 515), and an intronic single-nucleotide polymorphism (SNP) in the HLA-B gene showed one of the strongest associations. We use a subset of patients to demonstrate that this SNP reflects the effect of the HLA-B*5703 allele, which shows a genome-wide statistically significant association with viral load set point (P = 5.6 x 10(-10)). These analyses therefore confirm a member of the HLA-B*57 group of alleles as the most important common variant that influences viral load variation in African Americans, which is consistent with what has been observed for individuals of European ancestry, among whom the most important common variant is HLA-B*5701.Item Open Access Screening the human exome: a comparison of whole genome and whole transcriptome sequencing.(Genome Biol, 2010) Cirulli, Elizabeth T; Singh, Abanish; Shianna, Kevin V; Ge, Dongliang; Smith, Jason P; Maia, Jessica M; Heinzen, Erin L; Goedert, James J; Goldstein, David B; Center for HIV/AIDS Vaccine Immunology (CHAVI)BACKGROUND: There is considerable interest in the development of methods to efficiently identify all coding variants present in large sample sets of humans. There are three approaches possible: whole-genome sequencing, whole-exome sequencing using exon capture methods, and RNA-Seq. While whole-genome sequencing is the most complete, it remains sufficiently expensive that cost effective alternatives are important. RESULTS: Here we provide a systematic exploration of how well RNA-Seq can identify human coding variants by comparing variants identified through high coverage whole-genome sequencing to those identified by high coverage RNA-Seq in the same individual. This comparison allowed us to directly evaluate the sensitivity and specificity of RNA-Seq in identifying coding variants, and to evaluate how key parameters such as the degree of coverage and the expression levels of genes interact to influence performance. We find that although only 40% of exonic variants identified by whole genome sequencing were captured using RNA-Seq; this number rose to 81% when concentrating on genes known to be well-expressed in the source tissue. We also find that a high false positive rate can be problematic when working with RNA-Seq data, especially at higher levels of coverage. CONCLUSIONS: We conclude that as long as a tissue relevant to the trait under study is available and suitable quality control screens are implemented, RNA-Seq is a fast and inexpensive alternative approach for finding coding variants in genes with sufficiently high expression levels.Item Open Access The characterization of twenty sequenced human genomes.(PLoS Genet, 2010-09-09) Pelak, Kimberly; Shianna, Kevin V; Ge, Dongliang; Maia, Jessica M; Zhu, Mingfu; Smith, Jason P; Cirulli, Elizabeth T; Fellay, Jacques; Dickson, Samuel P; Gumbs, Curtis E; Heinzen, Erin L; Need, Anna C; Ruzzo, Elizabeth K; Singh, Abanish; Campbell, C Ryan; Hong, Linda K; Lornsen, Katharina A; McKenzie, Alexander M; Sobreira, Nara LM; Hoover-Fong, Julie E; Milner, Joshua D; Ottman, Ruth; Haynes, Barton F; Goedert, James J; Goldstein, David BWe present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten "case" genomes from individuals with severe hemophilia A and ten "control" genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set. We also show that the number of novel single nucleotide variants (SNVs) discovered per genome seems to stabilize at about 144,000 new variants per genome, after the first 15 individuals have been sequenced. Finally, we find that, on average, each genome carries 165 homozygous protein-truncating or stop loss variants in genes representing a diverse set of pathways.Item Open Access Tissue-specific genetic control of splicing: implications for the study of complex traits.(PLoS Biol, 2008-12-23) Heinzen, Erin L; Ge, Dongliang; Cronin, Kenneth D; Maia, Jessica M; Shianna, Kevin V; Gabriel, Willow N; Welsh-Bohmer, Kathleen A; Hulette, Christine M; Denny, Thomas N; Goldstein, David BNumerous genome-wide screens for polymorphisms that influence gene expression have provided key insights into the genetic control of transcription. Despite this work, the relevance of specific polymorphisms to in vivo expression and splicing remains unclear. We carried out the first genome-wide screen, to our knowledge, for SNPs that associate with alternative splicing and gene expression in human primary cells, evaluating 93 autopsy-collected cortical brain tissue samples with no defined neuropsychiatric condition and 80 peripheral blood mononucleated cell samples collected from living healthy donors. We identified 23 high confidence associations with total expression and 80 with alternative splicing as reflected by expression levels of specific exons. Fewer than 50% of the implicated SNPs however show effects in both tissue types, reflecting strong evidence for distinct genetic control of splicing and expression in the two tissue types. The data generated here also suggest the possibility that splicing effects may be responsible for up to 13 out of 84 reported genome-wide significant associations with human traits. These results emphasize the importance of establishing a database of polymorphisms affecting splicing and expression in primary tissue types and suggest that splicing effects may be of more phenotypic significance than overall gene expression changes.Item Open Access Whole-Genome Sequencing of a Single Proband Together with Linkage Analysis Identifies a Mendelian Disease Gene(PLoS Genetics, 2010-06-17) Sobreira, Nara LM; Cirulli, Elizabeth T; Avramopoulos, Dimitrios; Wohler, Elizabeth; Oswald, Gretchen L; Stevens, Eric L; Ge, Dongliang; Shianna, Kevin V; Smith, Jason P; Maia, Jessica M; Gumbs, Curtis E; Pevsner, Jonathan; Thomas, George; Valle, David; Hoover-Fong, Julie E; Goldstein, David B