Browsing by Author "Gibson, Greg"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Lactic acidosis triggers starvation response with paradoxical induction of TXNIP through MondoA.(PLoS Genet, 2010-09-02) Chen, JL; Merl, D; West, M; Chi, JTAAlthough lactic acidosis is a prominent feature of solid tumors, we still have limited understanding of the mechanisms by which lactic acidosis influences metabolic phenotypes of cancer cells. We compared global transcriptional responses of breast cancer cells in response to three distinct tumor microenvironmental stresses: lactic acidosis, glucose deprivation, and hypoxia. We found that lactic acidosis and glucose deprivation trigger highly similar transcriptional responses, each inducing features of starvation response. In contrast to their comparable effects on gene expression, lactic acidosis and glucose deprivation have opposing effects on glucose uptake. This divergence of metabolic responses in the context of highly similar transcriptional responses allows the identification of a small subset of genes that are regulated in opposite directions by these two conditions. Among these selected genes, TXNIP and its paralogue ARRDC4 are both induced under lactic acidosis and repressed with glucose deprivation. This induction of TXNIP under lactic acidosis is caused by the activation of the glucose-sensing helix-loop-helix transcriptional complex MondoA:Mlx, which is usually triggered upon glucose exposure. Therefore, the upregulation of TXNIP significantly contributes to inhibition of tumor glycolytic phenotypes under lactic acidosis. Expression levels of TXNIP and ARRDC4 in human cancers are also highly correlated with predicted lactic acidosis pathway activities and associated with favorable clinical outcomes. Lactic acidosis triggers features of starvation response while activating the glucose-sensing MondoA-TXNIP pathways and contributing to the "anti-Warburg" metabolic effects and anti-tumor properties of cancer cells. These results stem from integrative analysis of transcriptome and metabolic response data under various tumor microenvironmental stresses and open new paths to explore how these stresses influence phenotypic and metabolic adaptations in human cancers.Item Open Access Single-cell RNA-seq of out-of-thaw mesenchymal stromal cells shows tissue-of-origin differences and inter-donor cell-cycle variations.(Stem cell research & therapy, 2021-11-04) Medrano-Trochez, Camila; Chatterjee, Paramita; Pradhan, Pallab; Stevens, Hazel Y; Ogle, Molly E; Botchwey, Edward A; Kurtzberg, Joanne; Yeago, Carolyn; Gibson, Greg; Roy, KrishnenduBackground
Human Mesenchymal stromal cells (hMSCs) from various tissue sources are widely investigated in clinical trials. These MSCs are often administered to patients immediately after thawing the cryopreserved product (out-of-thaw), yet little is known about the single-cell transcriptomic landscape and tissue-specific differences of out-of-thaw human MSCs.Methods
13 hMSC samples derived from 10 "healthy" donors were used to assess donor variability and tissue-of-origin differences in single-cell gene expression profiles. hMSCs derived and expanded from the bone marrow (BM) or cord tissue (CT) underwent controlled-rate freezing for 24 h. Cells were then transferred to the vapor phase of liquid nitrogen for cryopreservation. hMSCs cryopreserved for at least one week, were characterized immediately after thawing using a droplet-based single-cell RNA sequencing method. Data analysis was performed with SC3 and SEURAT pipelines followed by gene ontology analysis.Results
scRNA-seq analysis of the hMSCs revealed two major clusters of donor profiles, which differ in immune-signaling, cell surface properties, abundance of cell-cycle related transcripts, and metabolic pathways of interest. Within-sample transcriptomic heterogeneity is low. We identified numerous differentially expressed genes (DEGs) that are associated with various cellular functions, such as cytokine signaling, cell proliferation, cell adhesion, cholesterol/steroid biosynthesis, and regulation of apoptosis. Gene-set enrichment analyses indicated different functional pathways in BM vs. CT hMSCs. In addition, MSC-batches showed significant variations in cell cycle status, suggesting different proliferative vs. immunomodulatory potential. Several potential transcript-markers for tissue source differences were identified for further investigation in future studies. In functional assays, both BM and CT MSCs suppressed macrophage TNFα secretion upon interferon stimulation. However, differences between donors, tissue-of-origin, and cell cycle are evident in both TNF suppression and cytokine secretion.Conclusions
This study shows that donor differences in hMSC transcriptome are minor relative to the intrinsic differences in tissue-of-origin. hMSCs with different transcriptomic profiles showed potential differences in functional characteristics. These findings contribute to our understanding of tissue origin-based differences in out-of-thaw therapeutic hMSC products and assist in the identification of cells with immune-regulatory or survival potential from a heterogeneous MSC population. Our results form the basis of future studies in correlating single-cell transcriptomic markers with immunomodulatory functions.Item Open Access The characterization of twenty sequenced human genomes.(PLoS Genet, 2010-09-09) Pelak, Kimberly; Shianna, Kevin V; Ge, Dongliang; Maia, Jessica M; Zhu, Mingfu; Smith, Jason P; Cirulli, Elizabeth T; Fellay, Jacques; Dickson, Samuel P; Gumbs, Curtis E; Heinzen, Erin L; Need, Anna C; Ruzzo, Elizabeth K; Singh, Abanish; Campbell, C Ryan; Hong, Linda K; Lornsen, Katharina A; McKenzie, Alexander M; Sobreira, Nara LM; Hoover-Fong, Julie E; Milner, Joshua D; Ottman, Ruth; Haynes, Barton F; Goedert, James J; Goldstein, David BWe present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten "case" genomes from individuals with severe hemophilia A and ten "control" genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set. We also show that the number of novel single nucleotide variants (SNVs) discovered per genome seems to stabilize at about 144,000 new variants per genome, after the first 15 individuals have been sequenced. Finally, we find that, on average, each genome carries 165 homozygous protein-truncating or stop loss variants in genes representing a diverse set of pathways.